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ABSTRACT 

The vast majority of products and processes in industry and academia require 

human interaction.  Thus, digital human models (DHMs) are becoming critical for 

improved designs, injury prevention, and a better understanding of human behavior.  

Although many capabilities in the DHM field continue to mature, there are still many 

opportunities for improvement, especially with respect to posture- and motion-prediction.  

Thus, this thesis investigates the use of artificial neural network (ANN) for improving 

predictive capabilities and for better understanding how and why human behave the way 

they do. 

With respect to motion prediction, one of the most challenging opportunities for 

improvement concerns computation speed.  Especially, when considering dynamic 

motion prediction, the underlying optimization problems can be large and 

computationally complex.  Even though the current optimization-based tools for 

predicting human posture are relatively fast and accurate and thus do not require as much 

improvement, posture prediction in general is a more tractable problem than motion 

prediction and can provide a test bead that can shed light on potential issues with motion 

prediction.  Thus, I investigate the use of ANN with posture prediction in order to 

discover potential issues.  In addition, directly using ANN with posture prediction 

provides a preliminary step towards using ANN to predict the most appropriate 

combination of performance measures (PMs) - what drives human behavior. The PMs, 

which are the cost functions that are minimized in the posture prediction problem, are 

typically selected manually depending on the task.  This is perhaps the most significant 
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impediment when using posture prediction.  How does the user know which PMs should 

be used?  Neural networks provide tools for solving this problem. 

This thesis hypothesizes that the ANN can be trained to predict human motion 

quickly and accurately, to predict human posture (while considering external forces), and 

to determine the most appropriate combination of PM(s) for posture prediction.  Such 

capabilities will in turn provide a new tool for studying human behavior.  Based on initial 

experimentation, the general regression neural network (GRNN) was found to be the 

most effective type of ANN for DHM applications.  A semi-automated methodology was 

developed to ease network construction, training and testing processes, and network 

parameters. This in turn facilitates use with DHM applications. 

With regards to motion prediction, use of ANN was successful.  The results 

showed that the calculation time was reduced from 1 to 40 minutes, to a fraction of a 

second without reducing accuracy.  With regards to posture prediction, ANN was again 

found to be effective.  However, potential issues with certain motion-prediction tasks 

were discovered and shed light on necessary future development with ANNs.  Finally, a 

decision engine was developed using GRNN for automatically selecting four human 

PMs, and was shown to be very effective.  In order to train this new approach, a novel 

optimization formulation was used to extract PM weights from pre-existing motion-

capture data. Eventually, this work will lead to automatically and realistically driving 

predictive DHMs in a general virtual environment. 
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CHAPTER I 

INTRODUCTION 

A digital human model (DHM) is a human representation on computer software 

used to perform analyses and evaluations related to human performance. This 

performance includes human posture prediction, motion prediction, ability to complete a 

task, workplace design, and many other ergonomics studies that concern what is done by 

human beings. 

Artificial neural network (ANN) is a mathematical model for predicting system 

performance (i.e., system output) inspired by the structure and function of 

human biological neural networks. The ANN is developed and derived to have a function 

similar to the human brain by memorizing and learning various tasks and behaving 

accordingly. It is trained to predict specific behavior and to remember that behavior in the 

future like the human brain does. Its architecture also is similar to human neuron layers in 

the brain as far as functionality and inter-neuron connection. ANN has been successfully 

used in various applications, including those in the DHM world.  

ANN is a type of multi-dimensional regression analysis models. It is better in 

some way than the other regression models, because ANN is more powerful in solving 

practical and complex problems. Generally, researchers apply and use ANN in system 

prediction problems when: 1) known and reliable system input/output sets are available 

(i.e., training data availability), 2) fast system prediction is required, and 3) the system is 

complicated and difficult to express in mathematical formulas. In general, the ANN is 

able to predict any system accurately and rapidly no matter how complex the system.  

This thesis works on using ANN to predict applications in the DHM field. First, 

the proper type of ANN for the DHM applications was selected. Next, a new semi-

automated strategy was developed to ease the network construction, training and testing 

processes, and network parameters. Then, the new strategy was used to predict some 

http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Biological_neural_networks
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task-based human motion and posture predictions using ANN. Finally, a decision engine 

was developed using ANN for selecting human performance measures (PMs), which are 

functions that control human performance when intending to perform a task. 

This chapter presents an introduction to the thesis work and provides background 

about the general use of ANN and DHM applications. In addition, it describes a 

hypothesis and the motivation for targeting the use of ANN in predicting DHM. The 

chapter starts by introducing background on the general research concepts for this thesis. 

Then, the research motivation and literature review are presented to show the scope of the 

current state of the art in the DHM field and the various applications of ANNs. Finally, 

the research objectives and contributions are presented, followed by a brief overview of 

the thesis. 

1.1. Background 

In virtual human science, it is important to study and predict human performance, 

which includes motion, posture, grasping, etc., in order to duplicate realistic human 

performance. Human motion prediction is to predict a human’s motion during specific 

tasks like walking, running, jumping, etc.  This prediction is achieved by an optimization-

based method in which the body’s degrees of freedom (DOFs) are the design variables to 

achieve the required motion, and the PMs are the functions to be minimized. Similarly, 

human posture prediction is a prediction of a human’s posture while performing a defined 

task like reaching a point, lifting a box, etc. Human performance prediction, however, is 

not easy because it is influenced by PMs, which are the cost functions that a human tries 

to minimize to perform such a task. Depending on the task, one or more of those PMs are 

minimized. For example, minimizing the joint displacement PM alone was useful for 

touching points in front of the body, but it provided bad postures for points behind the 

body; it should combine with other PMs like potential energy. Maximum joint torque PM 

was used to provide realistic postures in box-lifting studies (Marler et al., 2011).  
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Generally speaking, PMs are the functions to be minimized in single-objective 

optimization (one PM) or multi-objective optimization (two or more PMs) by finding the 

body DOFs, which are the design variables of the optimization problem. The way these 

PMs are combined in different human performances is still unclear because there are 

many kinds of PMs, and there are various tasks to be studied. In addition, which PM to 

include for a task and the weight or importance of that included PM in the optimization 

problem has not yet been studied. Researchers also found that PMs are highly correlated; 

changing their values or types affects performance results. 

In order to develop successful DHM, researchers have worked on various kinds of 

human actions (motion, posture, etc.). Predicting human motion and posture is important 

for understanding what drives human performance, and is useful in other practical studies 

like human simulations. The most advanced and successful works were in human posture 

prediction, where researchers developed different approaches to apply and predict human 

postures on computer human models. This work on posture prediction is mature in terms 

of predicting human postures in real time accurately and for all body joints. On the other 

hand, researchers are trying to make posture prediction more robust and adaptable to the 

task to be accomplished. 

Unlike posture prediction, human motion prediction is very complex because it 

requires dynamic prediction for body DOFs. Solid work was done toward developing a 

high-fidelity human motion prediction that could perform in a task-based manner like the 

predictive dynamic algorithm that was introduced by Xiang et al. (2010). On the other 

hand, those available algorithms need a long time, averaging in minutes, to run and 

provide the motion for such a task; processing time is needed to calculate and optimize 

different DOF values over the motion time for such a task. The motion prediction 

calculations are a problem even for simple tasks or rerunning the same task with some 

minor input changes. Hence, there is a need for real-time motion prediction in order to 

allow the user to see immediate results for changes in any task input parameters. 



4 
 

 

 

Moreover, more reliable sources for human motion prediction, like motion capture data, 

should be used in order to obtain robust results and practical indications about how and 

why humans perform. 

In this thesis, a new ANN-based approach is presented to study some DHM 

applications, which could eventually lead to understanding how humans think or behave 

when performing tasks. These applications include: 1) motion prediction, 2) posture 

prediction, and 3) performance measures (PMs) determination. The new approach 

investigates improving the speed of computations in the motion prediction task and 

making posture prediction more robust. In addition, the thesis tries to address 

determination of PMs using ANN. As mentioned, humans try to minimize some PMs 

during tasks. The PMs could be joint-based, like maximum joint torques, displacement, 

and discomfort, or energy-based. Studies were done using one or some of those PMs in 

posture prediction to get ideas about their effects on human performance. The studies, 

however, minimally specify when and why to use such PMs, and for which kind of tasks 

(Marler et al. (2005a). Therefore, predicting the use of different PMs at various tasks is 

critical to get a better understanding of human performance and a better representation of 

what drives human performance. 

The work in this thesis focuses on using ANN to initiate a pathway for solving 

problems related to human performance prediction. The ANN can predict complex 

systems quickly for best system results and shows excellent trade-off between the input 

parameters or factors that control the system. This ability is achieved because the network 

depends on some training or learning data (i.e., known sets of system input and output), 

like the human brain does. So, the network predicts any new input by doing minor 

calculations because it was trained to see similar inputs. The learning process needs 

experience to perform on the network for best prediction, because some network 

parameters need to be set depending on the predicted system’s inputs and outputs. More 

detailed information about ANN, its architecture, and its learning process will be 
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described in Chapter 2. The learning process and network parameters would be 

automated so that any user could use it, including those who are not expert in ANN. 

Currently, the common limitation for using different types of ANNs is that some of the 

parameters are determined by trial and error, which could produce bad predictions. 

Moreover, there are different types of ANN, such as the feed-forward neural network 

(FFNN) and the radial basis neural network (RBNN), that are used to solve problems 

similar to those in DHM; these types have other subtypes under their names. Therefore, 

the best type of ANN for DHM applications has not been determined; it depends on 

researcher preference. Different types of FFNN and RBNN were used in many 

applications with varying success rates. 

1.2. Literature Review 

The current DHM needs and state of the art in ANN applications need to be 

reviewed. This section discusses the literature regarding the broad use of ANNs in 

various applications, especially in DHM fields, with regard to their ability and the kind of 

problems they can handle. Three DHM applications that target understanding human 

intelligent behavior are also discussed. Those applications include human motion 

prediction, posture prediction, and joint-based PMs. 

1.2.1 Artificial neural network (ANN) applications 

ANN is fast and accurate because after the training process is completed, 

optimization and time-consuming calculations are no longer needed. So, the network 

outputs are predicted directly for the provided inputs based on what it has learned to 

predict for a specific system. There are many ANN types that are used for various 

applications such as engineering, weather and flood forecasting, business, and medicine 

because of their power and ability to generalize any practical problem (Coit et al., 1998; 

Twomey et al., 1998).  
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Generally, ANN applications fall into the categories of data clustering, 

classification, or regression. Data clustering creates relationships between fed inputs and 

separates them into different clusters based on their similarities. In classification, inputs 

are assigned to their class among different classes. Data regression means creating a 

curve that passes and fits between training data sets.  The data regression type is normally 

used to predict and solve DHM applications. The main regression types of ANN are 

FFNN and RBNN, both of which have other subtypes under different names. The ANN 

detailed architecture and common types will be described in Chapter 2. Variables that 

could be used as input parameters in DHM applications include, but are not limited to, 

human anthropometry, the task to be performed, load existence, position (sitting or 

standing), joint ranges of motion (ROMs), and model DOFs. 

Researchers incorporate ANN when they want to save time or cost in system 

development, or when they are unable to represent the system with a mathematical 

algorithm. For example, ANN was used to find the Cobb angle, which indicates scoliosis 

severity, by selecting the optimal set of input torso indices (Jaremko et al., 2002). The 

Cobb angle (ANN output) was calculated with accepted accuracy. Tani et al. (2008) 

trained a recurrent neural network (a type of ANN) on a humanoid robot to learn to 

manipulate objects. The results showed that the network can afford both generalization 

and context dependency in generating skilled behaviors. In addition, ANN was used in 

linguistics by Collobert et al. (2008) for language processing predictions. For a given 

sentence (ANN input), they trained the network to predict part-of-speech tags, chunks, 

named entity tags, semantic roles, semantically similar words, and the likelihood that the 

sentence makes sense. 

Recently, researchers became more interested in using ANN in DHM because of 

its efficiency and accuracy in solving problems like human performance prediction. Such 

studies applied ANN in humanoid motion prediction, obstacle avoidance, human posture 

prediction, and other human-workplace problems. Zha et al. (2003) proposed an ANN-
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based approach for human-machine system design and simulation that predicts an 

operator’s postures and joint angles of motion (ANN outputs) associated with a range of 

workstation configurations (ANN inputs). Another study was done by Li et al. (2007) on 

humanoid dynamic obstacle avoidance. The idea was to use cameras to collect the motion 

path of dynamic obstacles (ANN input) and then build a prediction model using a radial 

basis neural network (RBNN) using those data. Dynamic obstacles can be utilized in 

local path planning for a mobile robot in dynamic and uncertainty environments. Once 

the planner finds there is a dynamic obstacle in the rolling window, the network predicts 

the obstacle’s motion path (ANN output) in the next period based on three time sequence 

values of the obstacle in a continuous period of time. Work-related posture prediction and 

human-machine work efficiency using RBNN were presented by Zhao et al. (2010); the 

RBNN was used in mapping posture prediction and also in referring to the working 

efficiency with around 27 DOF. That study concluded that RBNN was fast in terms of 

calculating the virtual human postures and promising in solving ergonomics simulation 

and assessment of human-machine system problems. Those works are examples that 

show how efficient ANN is in handling practical problems, especially in DHM studies. 

Grasping tasks were also tested using ANN by, for example, training the network on 

specific grasps corresponding to finger positions. Inverse kinematics mapping between 

the fingertip 3D position and the corresponding joint angles were proposed and evaluated 

using ANN (Rezzoug et al., 2008), where the network had 3 inputs and 21 outputs. The 

study used an instrumented glove for mapping finger movements to a multi-chain model 

of the hand. From the fingertip desired position, the network allowed predicting the 

corresponding finger joint angles that achieve finger positions. 

Applying ANN in broad fields shows its ability in solving different kinds of 

problems. Scholars have used ANNs in DHM problems and obtained acceptable results, 

but no one type of ANN has been determined to be best for DHM problems. One study 

claimed that RBNN was fast in terms of calculating the virtual human postures and might 
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be good for similar applications, but in reality, all ANNs work quickly once the training 

is completed. The network types, however, differ in speed of training and time for 

optimizing or learning their prediction capabilities during the training phase. For 

example, FFNN experiences memory problems if the number of inputs and/or outputs is 

relatively large, and this limits using it for some applications, especially in DHM. In 

human motion prediction, the number of predicted outputs is large because that includes 

predicting all body DOFs and their values at all time frames over the motion task. That 

means hundreds of outputs, which might explain the limited use of FFNN and ANNs in 

general for studying human performance applications. Moreover, the learning process, 

which is the core of using ANN, should be performed in a more generic and smarter way 

so that any system is predicted in the proper way. 

Within the context of human modeling problems, ANNs are applied only to very 

specific scenarios and have not yet been developed for robust use with more general 

DHM problems. To date, ANNs have been used in DHM for solving confined systems 

with a small number of parameters or conditions. The following discussion will present 

the current state in three DHM applications with the focus on using ANN as an approach 

in these applications. These applications include motion prediction, posture prediction, 

and PMs. 

1.2.2 Human motion prediction and artificial neural 

network (ANN) 

As part of studying human biomechanics and DHM, it is important to understand 

human motion as a dynamic function and a way to touch the factors or drivers that direct 

human thinking in task performance. Real understanding and duplication of human 

motion strategies also inspires many industrial fields that use intelligent moving parts as 

well as humanoid dynamics. Most motion prediction studies depend on motion capture 

systems as an approach to track, record, and reproduce human motions. Chaffin et al. 
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(2001) used a motion capture system to record human motion while reaching and moving 

light to moderate load objects while either seated or standing. Then, they used a 17-link 

kinematics model to resolve the dynamics of the motions where their initial motion 

prediction algorithms captured well over 95%. Other various optimization and 

mathematical approaches are also used to reconstruct human motion that is real and 

computationally fast. Xiang et al. (2010) developed the predictive dynamic (PD), which 

is a simulation for human motion based on formulating an optimization problem with 

appropriate PMs and constraints that depend on the predicted task. Despite the PD 

novelty in reproducing realistic motions, computational speed is still the main limitation 

to making the PD work in real time. 

Another efficient mathematical approach for predicting human motion is ANN, 

which can handle complex problems like human motion. Researchers applied ANN in 

gait and motion analysis; the FFNN type was used to manipulate an electro-myogram 

(EMG) signal and joint motion in predicting a joint’s stiffness control strategy during a 

specific contact task (Kang et al., 2007).  For that study, they tested three different ANNs. 

The network inputs were 16, 18, and 20, respectively, for all proposed networks with four 

outputs. The results showed that the third network gave the most accurate results without 

any problems in terms of time or training processes for using that number of inputs. The 

third network provided the best results because it had more parameters that described the 

problem more specifically, which improved the prediction ability. Najmaei et al. (2010) 

showed that by using FFNN, the future motion trajectory of the human can be integrated 

in a reactive control safety strategy to foresee and react to an upcoming dangerous 

situation prior to its occurrence. As a result, it was shown that applying a prediction-

based reactive control strategy using ANN could compensate for the delay due to danger 

evaluations and the modification of the path and could significantly improve the 

performance.  
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Moreover, the efficiency of using ANN for motion prediction is shown clearly in 

robotics applications. Hahn et al. (2005) performed a study to demonstrate the 

effectiveness of ANN in mapping gait measurements into motion. The FFNN type was 

used in that study and improved the performance by minimizing the processing time and 

increasing the accuracy of the mapped motion. Nishide et al. (2009) developed a model 

that searches and generates robot motions using two types of ANN. They trained the 

recurrent type of neural network with parametric bias to self-organize robot and object 

dynamics. Then, another type of ANN, the hierarchical neural network, was trained to 

link the object image with the searched motion. The results showed that the robot 

acquired the most reliable motion and shifted it according to the posture of the object. Bu 

et al. (2009) also proposed a task model motion prediction using a Bayesian network 

type. That model was able to predict occurrence probabilities of the motions concerned in 

the task by using information from the previous motion. 

Some work showed that incorporating ANN in motion prediction improved the 

accuracy and computational speed, which was responsible for the delay in some outputs 

when using other methods. One of the studies compared three ANNs’ prediction abilities 

for human motion performance and found that the one with the most input parameters 

had the best output ability. This indicates that expressing a system using more inputs will 

improve the general performance in terms of handling more conditions as well as 

predicted outputs. Most of the work discussed here, however, used FFNN, which has 

some memory and accuracy issues with a large number of inputs and outputs. This 

suggests that other types of ANN should be tested and used for motion prediction. In 

addition, no work has been done on prediction of motion for a full human model, likely 

because of limitations in the types of ANN used. Moreover, no one has coupled ANN 

with PD to improve the speed of calculations. 
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1.2.3 Human posture prediction and artificial neural 

network (ANN) 

Besides human motion prediction, posture prediction is an important part of 

designing a virtual human. A lot of effort is required to find the best way to predict and 

express any human model’s posture. We need to predict posture for many ergonomic 

studies as well as human-machine workplace design. Predicting real posture is 

complicated because humans behave differently and choose their postures based on many 

factors that are still unclear. There are two main approaches to solving posture prediction 

problems. The first approach involves prerecorded data using motion capture systems 

combined with anthropometric data and functional regression models (Beck et al., 1992; 

Chaffin et al., 2001). Those recorded data are used to build an algorithm that simulates 

different human motions (Park et al., 2002). Methods such as the pseudo-inverse method 

are then used to solve the optimization problem and find the best expected posture from 

the robot or virtual human model (Liegeois et al., 1977). The prerecorded data method, 

however, is not able to provide a wide range of creative or hypothetical postures. 

The second approach involves real-time inverse kinematic optimization-based 

posture prediction that has recently been introduced as a dependable way to predict 

human posture based on some objective functions. It depends on defining the final 

position (target point) that needs to be reached.  Basically, the optimization problem has 

three main parts: (1) variables to be found, (2) objective functions, which are functions of 

those variables, and (3) constraints, which are the limits that the design can’t exceed. For 

human posture prediction, joint angles are the design variables. Many factors are 

incorporated in human posture prediction as objective functions, called PMs, that play an 

important role in brain decisions. Some of those factors are related to comfort level, like 

moving near joint limits, while others are related to the tendency to minimize joint 

torques, potential energy, joint displacements, and visual displacement. The constraints 

include the distance between the last link end and the target point, as well as the upper 
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and lower joint ROM limits. Riffard et al. (1996) found the optimum torso and arm 

displacements with seven DOF using an unconstrained optimization approach. Abdel-

Malek et al. (2001) developed an efficient numerical formulation for the prediction of 

real postures, which was based on kinematics for modeling with optimization of a cost 

function to predict a realistic posture. 

Whether human posture prediction is obtained from inverse kinematics or 

prerecorded data, some generalization methods like ANN have been used to handle some 

posture prediction problems and recreate postures in a fast and accurate manner. 

Researchers found that ANN is applicable to predicting posture without significant 

difference from the traditionally used methods (Jung et al., 1994). In that study, FFNN 

was trained to predict a 9-DOF human arm (DOF values were the outputs), and it 

provided acceptable results. There was no significant difference between the coordinates 

of the joints generated by the network and those measured from human posture reaching 

for the given targets (ANN inputs). Perez et al. (2008) used FFNN to predict two lifting 

postures based on finding joint angles that represent these postures. The network had 7 

inputs and 10 outputs; it predicted whole-body posture with an error of 5-20 degrees per 

joint angle for most body angles. Zhang et al. (2010) used FFNN to predict posture where 

the network inputs were landmarks that characterize human posture while the predicted 

outputs represented the transformed posture, which is a set of other landmarks. The range 

of errors in ANN prediction was acceptable in posture prediction, because it is hard to 

define the best posture for accomplishing a specific task since people just behave 

differently. 

The use of ANN in human posture prediction was developed early and applied in 

various studies. All studies referred to the potential use of ANNs to predict real and fast 

human postures. Application of ANNs in posture prediction is also powered by the 

available and reliable sources for training the network on intended postures. Those 

current posture prediction sources could predict postures in real time. On the other hand, 
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the use of ANN in human posture prediction in the context of a full human model (i.e., a 

human model with a realistic number of DOFs) is still unavailable. Like human motion 

prediction, studying human posture prediction using ANNs needs to be done by different 

types of ANNs, which might improve the prediction ability and handle the large number 

of DOFs for such a human model. 

1.2.4 Joint-based performance measures (PMs) 

As stated earlier in the background, motion and posture prediction problems are 

affected by many factors and cost functions called PMs. These PMs could be joint-based, 

like maximum joint torques, displacement, and discomfort, or whole-body energy-based, 

like potential energy. Completing a task based on optimizing those PMs is a multi-

objective optimization (MOO) problem, where the PMs are optimized together in one 

function. In general, PMs control human decisions about motion, posture, sitting, 

standing, and any other task to be accomplished. In this thesis, four joint-based PMs are 

studied, including: 1) discomfort, 2) joint displacement, 3) maximum joint torque, and 4) 

total joint torques. We focus in this thesis on the use of these four PMs in the context of a 

human posture prediction problem. The PMs are differently combined in the optimization 

problem depending on the task and the conditions of that task. The MOO problem is 

formulated as follows (Marler et al., 2004): 

Find:                       𝑞 ∈ 𝑅𝐷𝑂𝐹             (1.1)  

To minimize:          𝑓(𝑞) = [𝑓1(𝑞1)    𝑓2(𝑞2) … .   𝑓𝑘(𝑞𝑘)]𝑇    

Subject to:             𝑞𝑖𝐿 ≤  𝑞𝑖  ≤ 𝑞𝑖𝑈; 𝑖 = 1, … . ,𝑛      

                      ‖𝑥(𝑞) − 𝑝‖ ≤  𝜀      

where: q: joint angle 

[𝑓1(𝑞1)  𝑓2(𝑞2) … .𝑓𝑘(𝑞𝑘)]𝑇: cost functions (i.e., PMs) to be minimized. 

𝑞𝑖𝐿 , 𝑞𝑖𝑈: the lower and upper joint angle limits, respectively. 
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𝑥(𝑞): position of vector in Cartesian space that describes the location of the end-

effector as a function of the joint angles, with respect to the global coordinate system. 

𝜀: a small number that approximates zero 

𝑝: the position vector of the target point 

Joint displacement is one of the major PMs to obtain real human posture 

prediction. This PM is incorporated to include different costs for moving various body 

joints, depending on which joints the human likes to move in his posture. For example, 

when we need to reach a point in front of our bodies, we first try to reach it by moving 

the hand alone. Then, if the point can’t be reached, we move the shoulder with the hand 

and then the torso if it is still unreachable. Marler et al. (2005a) showed that joint 

displacement, even if it is used alone in the optimization problem, provides subjectively 

acceptable results for touching most points in front of the body. The discomfort PM used 

in this thesis was developed by Marler et al. ( 2005b). The two types of joint-torque-

based PMs that are used in this thesis are: 1) the sum of joint torques (total joint torques) 

and 2) maximum joint torque (Marler et al., 2011; Liu et al., 2009). Generally, joint 

torque represents the force of a group of muscles acting on or around a joint, and the 

torque limits represent strength. Actually, both torque-based PMs are different in their 

contributions in posture prediction and provide different results when they are used 

separately. 

The literature referred to and used the PMs either individually or in groups of two 

or more. Scholars showed that MOO is the most practical and real option for studying 

human posture prediction (Yu et al., 2001; Mi et al., 2004). Basically, in humans there 

are many PMs that measure the human’s performance to complete posture in a task-based 

manner. Some of them are still under study, such as joint fatigue, which is hard to 

determine. Others, however, have received more interest in the literature, like discomfort, 

potential energy, and joint displacement. Marler et al. (2005a) also studied joint 

displacement and potential energy in posture prediction, and concluded that potential 
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energy cannot be used alone in posture prediction. It should be used in small weight (i.e., 

less weight value in the MOO problem) with other objective functions, and it is more 

helpful for predicting real postures at target points located behind the body. Another 

study was introduced for fatigue effect on MOO in posture prediction, and the changes in 

predicted posture results were analyzed mathematically with and without fatigue 

existence (Ma et al., 2009). Recently, other MOO method studies were done for using 

three or more PMs (Marler et al., 2010; Yang et al., 2010). The remaining question is 

how to choose those different PMs for any posture prediction task.  

In summary, studying human PMs should go along with posture prediction 

because proper use of different PMs in various posture tasks produces robust and real 

postures, therefore increasing understanding of how the human behaves when 

performing. The scholars above have studied posture prediction and other ergonomic 

fields using various PMs. This inconsistency of choosing PMs in the studies indicates the 

need for thorough analysis among those PMs to generalize their use for any task. The 

literature succeeds in extracting some general trends for using particular PMs.  For 

example, minimizing joint displacement was good in posture prediction for points in 

front, while potential energy should be combined in small fraction with some other PMs. 

These conclusions could be enhanced by using ANN, but its use has been very limited 

and exclusive to some general human predicted posture. 

1.3. Motivation and Hypothesis 

Important work has been done on DHM fields using various approaches. Many 

ANN types had advantages in improving system performance for broad applications, 

including some for DHM. This thesis tries to embed ANN in solving some DHM 

problems and overcoming some of the current limitations. This work is motivated by the 

following: 
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1. Within the context of human modeling problems, ANNs are applied only to very 

specific scenarios and have not yet been developed for robust use with more 

general DHM problems. To date, ANNs have been used in DHM for solving 

confined systems with a small number of parameters or conditions. 

2. The best type of ANN to be used to predict DHM applications has not been 

determined. Different types of FFNN and RBNN were used in many applications 

with varying success rates. The RBNN type of ANN, however, is fast in terms of 

calculations during the training process and can handle a larger number of inputs 

and outputs than FFNN. 

3. There has been no work on using ANN for motion and posture predictions for a 

full human model, likely because of limitations in the types of ANN used. The 

previously used types of ANN in DHM field experienced memory and training 

problems when these networks predicted DHM with relatively large number of 

DOFs. 

4. ANN has never coupled with PD to improve the speed of calculations. The 

computational speed is still large, averaging in minutes, which is a problem even 

for simple tasks or rerunning the same task with some minor input changes. 

5. There has been no work toward proper use of combination of various PMs in 

posture prediction problems in a task-based manner. 

In general, there is potential for improving predictive DHMs using ANN, but 

DHMs will require use of a specific type of ANN. Successfully implementing and 

predicting DHM using ANN means that it handles the human performance decisions that 

are done by the human brain. Eventually, work on the level of ANN’s parameters and 

properties should reveal the functionality of the natural neural system in the brain, which 

regulates the human performance. Specifically, the following hypotheses will be tested: 

1. ANN can be integrated with PD and can increase the computational speed of PD 

without detriment to accuracy. 
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2. Despite the potential complexity of ANN, it is possible to develop software and 

an associated methodology for intuitive and easy use. 

3. ANN provides a method for automatically determining the most appropriate 

PM(s) for a general set of tasks. 

1.4. Objectives 

The presented hypotheses are examined in this thesis by trying to choose the best 

type of ANNs for enhancing the DHM predictive applications. Modifying the network 

construction and training is needed for optimal network performance. Then, the selected 

network should be evaluated by applying it to solve the current limitations in the DHM 

applications. Technically, solving these limitations should lead to understanding the 

general trend of human behavior when performing any task. This work pursues the 

following objectives: 

1. Select the best candidate network type of ANN to be used in DHM applications 

based on the advantages of the network and DHM needs (i.e., the ANN that works 

well for real and complete DHM problems). 

2. Automate the training process and set the network properties for the selected 

network to ease the use of that network in DHM by any user, and for any 

application. 

3. Generalize the use of ANN to predict relatively large DHM problems, where the 

selected network should be able to predict a relatively large number of outputs, in 

hundreds, from different types like joint angles, torques, ground reaction force, 

etc. By generalizing the prediction capabilities, the network provides this large 

number of outputs in a task-based manner under various conditions. 

4. Try to use the selected network for predicting a large number of DOFs in motion 

and posture problems, and from different types like those mentioned in objective 

number 3. 
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5. Investigate using the selected network to speed up the computations of the 

predicted motion task, and couple the network with PD. 

6. Develop a decision engine to select the proper PMs in a posture prediction 

problem in a task-based manner. 

1.5. Thesis Overview 

After an introduction to the current state of the art in the DHM field and to ANN 

as a potential approach to solve the limitations in this field, the second chapter describes 

ANN architecture in detail and discusses the most common types. The third chapter 

presents the new methodologies that this research provides, including proposed strategies 

for better use of ANN in DHM fields. The fourth chapter presents two applications for 

the use of the best selected network and the new proposed strategies in the context of 

motion prediction. The fifth chapter presents the use of the same network and strategies 

for predicting two posture tasks. Then, the sixth chapter presents the development of a 

decision engine to determine the PMs using the same selected network. A new training 

method is also presented in that chapter. The last chapter discusses the general 

achievements of this research, including summary, discussion, and future and long-term 

work that could build on the accomplished work. 
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CHAPTER II 

ARTIFICIAL NEURAL NETWORK: BACKGROUND 

The artificial neural network (ANN) is the proposed approach to be used in this 

thesis to solve the current limitations in digital human modeling (DHM) applications and 

to examine the validation of the hypothesis. In addition, part of this thesis concerns 

developing a semiautomatic technique for training ANN, as well as automatically 

selecting its properties for the best system prediction. Hence, this chapter first talks about 

the basic concept of ANN and its architecture, and then describes the network’s training 

process. Then, some of the most commonly used ANNs are described as far as their 

advantages, disadvantages, and applications. The final section focuses on the 

mathematical details of the selected ANN type that will be used in this thesis. 

2.1. Basic Concepts 

The human brain is a decision system in the human being that has millions of 

neuron folds connected in a complicated way. The brain is more powerful and faster than 

any computer processor in handling complicated problems related to human performance 

problems. The human brain has multiple layers of neurons that interact with each other in 

parallel. The parallel interaction means that each neuron receives input lines from all 

neurons in the previous layer and sends different output lines to all neurons in the next 

layer. The neuron also sends values to the previous layer and receives values from the 

next layer. By learning and memorizing doing such a task, these received and sent values 

to and from the neurons are set for that task to provide the proper decision. 

The brain has powerful decision abilities to solve various complex problems like 

motion, posture, mathematical calculations, etc. This ability is gained by memorizing and 

learning previous cases that are similar to these problems. The literature mimicked the 

brain’s neuron architecture to duplicate the underlying functionality of the brain, which 
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depends on the training and memorizing to solve various problems and perform different 

tasks under varying conditions. The new mimicked approach is called ANN, which is 

successfully used to predict many practical problems. 

ANN is an intelligent mathematical algorithm that consists of three main parts: (1) 

input layer, (2) middle or hidden layer(s), and (3) output layer. First, the input layer 

consists of the system’s inputs. The “input layer” is simply a vector of the inputs. Second, 

the hidden layer represents the core of the ANN and consists of many units called 

neurons. Inside the neurons, the main mathematical calculations occur to process the 

inputs and provide the proper outputs. Like a biological neuron in the real brain, the 

neuron in the hidden layer receives and sends a line of values from the previous layer and 

to the next layer, respectively. The received and sent values to and from the neuron differ 

depending on the weight value of the channel (i.e., line) that carries the value to and from 

the neuron. The weight of the channel means the value that is multiplied by the carried 

value (i.e., multiplying the weights value by the coming value from the previous neuron) 

before passing the result to the next neuron.  The weight value changes by changing the 

intended task to perform; its value is decided by learning and memorizing doing that task. 

Figure 2.1 shows a simple feed-forward neural network (FFNN) type of ANN. 

 

Figure 2.1: Simple feed-forward neural network. 
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In Figure 2.1, x represents the vector of the network’s inputs, and y is a vector of 

the network’s output. ANN is a kind of unconstrained optimization problem, where the 

neuron weight’s values are design variables to be found. The minimization function is the 

mean square error (MSE), which is the difference between the network predicted outputs 

and the exact training outputs. The following shows the optimization formula for the 

general ANN: 

Find:           ௜ܹ ∈ ܴே,	                        (2.1)             

To min:      ܧܵܯ ൌ ∑ ሺ ௜ܶ െ ௜ܻሻଶ
ே
௜ 	 

In the above formula, N represents the number of hidden neurons, and ௜ܹ is the 

ith weight value in the “between layer weights.” Many models and algorithms are 

available in ANN, ranging from basic models that could consist of single input, hidden, 

and output layers to more complex multi-layer ones. The complexity of ANN depends on 

the problem to be solved. The complexity of such a problem depends on the number of 

inputs that the network needs to handle and create relationships between and the number 

of outputs it needs to predict. The network works as a multi-dimensional curve fit (i.e., 

regression curve) for the system inputs. As an example for the regression curve, Figure 

2.2 presents an n-dimensional curve fitting for the training data that is shown as small 

dots. In the figure, the hidden layer determines the function ݂ሺ࢞ሻ that expresses the 

training data, while the neurons determine the dimension of the function (n) and the 

variable coefficients ሾܽ଴, ܽଵ, ܽଶ, … , ܽ௡ሿ. The system inputs 

representሾݔ ൌ ,ଶݔ	 ,ଶݔ ,ଷݔ … ,  ோሿ, for (R) the number of inputs. As stated previously, moreݔ

complex problems need more neurons in the hidden layer and, rarely, more hidden layers, 

because the literature indicates that a single hidden layer ANN is able to predict any 

practical nonlinear system (Bishop et al., 1995). 
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Figure 2.2: n-dimensional curve fitting function. 

Basically, building an efficient ANN for system prediction requires careful study 

of some issues related to the network, including: (1) a universal function approximation 

capability (i.e., ability to generalize the problem successfully), (2) resistance to noise or 

missing data (i.e., filtering the noise and extracting the features properly), (3) 

accommodation of multiple nonlinear variables for unknown interactions, and 4) 

choosing the proper type of ANN for the best problem prediction (Twomey et al., 1998). 

Researchers found that it is better to use one hidden layer and work on changing the 

number of neurons and/or training data sets until the best performance is achieved. The 

reasons for not using more than one hidden layer are as follows: 

1. Adding more hidden layers makes the network performance unstable and subject 

to more noise, because there are more neurons and connections between the 

layers. 

2. The curve fitting becomes more complex and very specialized to predict the 

training cases. That specialty reduces the general network prediction ability for 

inputs other than the training cases. 
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3. There is more potential to reach a local optimization solution when the network 

has two or more hidden layers, because there are more neurons to be minimized at 

different layers. Consequently, the locally optimized network produces wrong 

outputs. 

Equations 2.2 and 2.3, suggest a general way to find the right number of hidden 

neurons and training cases (Lawrence et al., 1998). However, this is only a good starting 

point for constructing the network for such a problem. The user would change these 

numbers during the training process in most applications till the best network 

performance is achieved. 

 ݄ ൌ ሺ݅ ൅  ሻ/2 (2.2)݋

 3ሺ݅ െ ሻ݋ 	൑ ܰ ൑ 	15ሺ݅ ൅  ሻ (2.3)݋

where:   h: the number of hidden neurons  

  N: the number of training data sets 

  i: the number of inputs  

  o: the number of outputs 

2.2. Training Process 

During ANN creation and development, the training step is the most important 

part for proper ANN performance. There are two types of training processes: supervised 

and unsupervised. The supervised training includes a set of training data where both input 

and output are known. Generally, it is used in classification and regression problems. In 

classification, inputs are assigned to their class among different classes. Regression 

means creating a curve that passes and fits between training data sets. Unsupervised 

learning is used when inputs are known but the outputs are not, which is the case in 

clustering problems. The network is trained to create the proper output by combining the 

inputs in the proper way.  
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Since DHM applications are regression and prediction problems, a supervised 

learning process must be used in this study. Hence, the inputs/outputs should be well 

defined for the targeted task. In addition, a reliable source should be provided to predict 

exact outputs for the fed inputs. In this thesis, all the above requirements are available by 

having solid and reliable sources for our models and applications. All these sources and 

collected training cases (input/output sets) will be described in detail when we talk about 

the applications of using ANN in the following chapters. 

The training process starts by normalization, which is done for the inputs of the 

training cases. The idea of normalization is to decrease the variance of the inputs vector 

and compress all inputs into a small range to be handled by the network. The 

normalization could be done in many ways, where the standard method is to pass the 

inputs through the sigmoidal function to compress them. In this thesis, we use the 

standard sigmoidal function, which will be discussed in Chapter 3 (Section 3.2.1). 

After the normalization is performed, the next step is to perform the optimization 

for the network, as in Equation 2.1. The neuron weight’s values are optimized and 

changed during the training process to allow the network to provide the highest 

achievable accuracy in predicting the provided training cases. MSE is calculated each 

time the values of the variable are changed until it reaches the accepted minimal value 

defined by the user. Then, the training process is finished when the required MSE is 

reached, and the network becomes ready to use for predicting new inputs. 

Some common problems occur along with the training process, including: 1) the 

optimization might stop without reaching the required MSE value and 2) the training 

process could finish successfully, but the network provides poor outputs when tested with 

new inputs. These situations mean that the network is unable to handle the relationships 

between the inputs (i.e., the network curve has lower dimension than what the problem 

inputs has). Thus, two things should be done to overcome these situations. First, increase 

the number of neurons in the network and repeat the training process. Adding more 
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neurons increases the dimension of the curve that fits the training data. If that does not 

work, it means the current number of training cases is not sufficient for the network to 

handle (i.e., extract) the relationships between the different systems’ features (inputs). 

Thus, more training cases should be collected before repeating the training process. 

2.3. Common Types of Artificial Neural Networks 

(ANNs) 

Many types of ANN have been developed to be used for many applications. Even 

for the same type, there are ANNs that differ in transfer functions and training 

approaches. Thus, selecting the most appropriate ANN type for a specific problem is not 

trivial. In this section, we will talk about the two main types of ANN that are used 

specifically to solve regression problems, which are the type of DHM applications in this 

thesis. These ANN types will be presented in terms of their general architectures, 

advantages, disadvantages, and applications. 

2.3.1 Feed-forward neural network (FFNN) 

Feed-forward neural network (FFNN), which is shown in Figure 2.3, is one of the 

most common and first developed types of ANN. Inputs are included in the input layer, 

which is shown in the figure as a set of circles. The inputs enter the hidden layer by the 

neuron weights that are shown in the figure. The hidden neurons are represented as 

circles each inside with a sigmoidal transfer function. The output layer receives the 

outputs of the hidden layer neurons by another set of neuron weights. Inside each neuron 

in the output layer, there is linear transfer function, shown in the same figure, to provide 

the final results (outputs). Generally, the sigmoidal and linear transfer functions are used 

on the hidden and output layers, respectively, when the problem is a regression type. 

More information about FFNN architecture and functionality are provided by Bishop et 

al. (1995). 
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Figure 2.3: Feed forward neural network (FFNN). 

FFNN is widely used because of its use in applications in both classifications and 

regression problems. The advantages of using FFNN are as follows: 

1. Generalizing system prediction at any input or extrapolating off-grid training 

space. After the network is trained, it will be able to predict any new input, even 

those out of the training limits. 

2. Working well for many applications, especially curve fitting of the time series 

data (i.e., data that come in different times and values). 

FFNN, however, has some limitations that constrain using it for some 

applications. These limitations include the following: 

1. It could be highly inaccurate because of local minima solution that comes from 

optimization. Usually, FFNN has more neurons in its hidden layer than other 

types of ANN. So, a local optimization solution is more likely to occur in FFNN. 

2. It experiences training time and memory issues during the training process 

because it has more neurons to be optimized. 

Therefore, these limitations exclude FFNN as an option in some applications 

when the number of the training cases and/or inputs and outputs are large. It is also 
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excluded when high accuracy is required for system performance. Consequently, these 

limitations drop FFNN as an option for the DHM applications that are presented in this 

thesis, because they need a network with high accuracy and a large number of outputs. 

2.3.2 Radial-basis neural network (RBNN) 

Figure 2.4 shows the radial basis neural network (RBNN), which is another type 

of ANN that is widely used in various applications. Besides the input and output vectors, 

the network consists of one hidden layer and one outputs layer. Because RBNN provides 

the foundation for this work, we provide additional details regarding its structure. 

 

Figure 2.4: RBNN with M-dimensional input and N-dimensional outputs. 

In the figure, ࢞ ൌ ሾݔ଴ଵ, ,଴ଶݔ … ,  ,଴ெሿ represents inputs of the networkݔ

ሾܥଵ, ,ଵଶܥ … ,  ଵሿ is the vector of weights at theࢃேଵሿ are the neurons of the hidden layer, ሾܥ

first neuron in the hidden layer (called line weights), and ሾݕଵ, ,ଶݕ … ,  ேଶሿ represent theݕ

network’s outputs. 

In the figure, ࢞ ൌ ሾݔ଴ଵ, ,଴ଶݔ … ,  ଴ெሿ provides the input for each neuron in theݔ

hidden layer, labeled C1 in the figure. In this case, the neurons are an essential radial 

basis function, hence the name radial basis neural network. All of the neurons 
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collectively constitute the hidden layer. The hidden layer has N1 neurons 

,ଵܥ] ,ଵଶܥ … ,  ேଵ]. Inside each hidden neuron Ci(x), there is a radial transfer function thatܥ

produces output hi. The output hi is multiplied with weight vector ࢃ௜ to produce hidden 

output vector Ai. The dimension of the weight matrix, as shown in Equation 2.4, and 

hidden output matrix A is N2xN1. Each row of W and A is referred to as a weight and 

hidden output vector associated with a corresponding neuron. The output layer has a 

number of neurons, labeled O1 in the figure, equal to number of outputs	ሾݕଵ, ,ଶݕ … ,  .ேଶሿݕ

Inside each output neuron Oi(Ai), the output is calculated by taking the sum of the 

received lines Ai , which represents a column of matrix A. A full description of this 

network and its functionality are provided by Buhmann et al. (2003). 

ࢃ  ൌ ൦

ଵଶݓ	ଵଵݓ ଵேଶݓ	…
ଶଶݓ	ଶଵݓ ଶேଶݓ	…
……………… . .

ேଵଶݓ	ேଵଵݓ ேଵேଶݓ	…

൪ (2.4) 

ࢎ  ൌ ሾ݄ଵ	݄ଶ … . . ݄ேଵሿ (2.5) 

࡭  ൌ ࢀࢎ ∙  (2.6) ࢃ

௜ݕ  ൌ ∑ ௞௜ܣ
ேଵ
௞ୀଵ  (2.7) 

RBNN is trained by solving the optimization problem in Equation 2.8. 

Find:           ࡺࢃ૚ࡺࢄ૛                     (2.8)         

To min:      ܧܵܯ ൌ ∑ ሺ ௜ܶ െ ௜ሻଶݕ
ே
௜  

In the above formula, ௜ܶ represents the ith training output, ݕ௜ is the predicted 

output from the network. Note that y is a function of W, as shown in Equation 2.7. The 

training starts with the first iteration with one hidden neuron (N1=1). Then, N1 is 

incremented by 1 each time before the next iteration. The optimization stops once the 

MSE equals a small value (almost zero).  
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Like FFNN, RBNN is used for all applications in both classification and 

regression problems. In this thesis, the RBNN is specifically used because of the 

following superior advantages: 

1. It provides highly accurate results within the limits of the training space (i.e., 

inside the domain of the training values). 

2. There are no local minima problems. The network does not optimize to local 

minimum solutions because the number of hidden neurons is optimized 

automatically in the training process. Thus, the optimal solution is obtained in 

terms of the number of neurons and the network weight matrix W. 

3. There are no computational time and computer memory problems, especially 

when there are a large number of input/output training sets, because the network 

does not have a large number of neurons and weights. The weight values to be 

optimized exist only on the output side of the hidden layer, while FFNN has 

weights in both sides. 

4. It was found by experience that RBNN is the best type of ANN for high-

dimensional regression models. 

Although RBNN has powerful prediction capabilities, it has some expected 

limitations, as follows: 

1. The network parameter (Gaussian width) is determined heuristically, which could 

produce poor results. 

2. It cannot predict points that are out of training grid space. The network cannot 

provide accurate outputs when the input is outside the range of training data (i.e., 

no extrapolation). 

There are three different types of RBNN:  

1. Exact RBNN. 

2. Probabilistic RBNN. 

3. Generalized regression neural network (GRNN).  
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There is no general rule for how to choose the best ANN for a specific problem. 

Each type is available to be used successfully, depending on the system type, training 

data availability, system complexity, and desired output accuracy. In this thesis, GRNN is 

found as the best appropriate type of RBNN to be used for all developments and 

applications. The GRNN is chosen because of following reasons: 

1. It is the most accurate type of RBNN for regression problems, which is the case of 

most DHM applications, including those presented in this thesis. 

2. It does not provide any abnormal results for any point within the training space, 

because it does not depend on the optimization to adjust the network performance. 

Thus, no local optimal solution is reached to provide some abnormal (bad) results. 

3. It has fewer network parameters that need to be determined heuristically than any 

other type of ANN. Therefore, it is more stable and easier to construct to obtain 

the best results. 

4. The GRNN training process has no optimization iteration, which allows handling 

larger problems (larger number of inputs and outputs) without any memory- or 

training-related problems. 

2.3.2.1 General regression neural network (GRNN) 

GRNN is considered a special type of RBNN for two reasons. First, it has no 

iterative optimization in its training process. Second, its hidden layer has a predefined 

number of neurons equal to the number of training cases. Figure 2.5 shows the general 

GRNN architecture. In the figure, ࢞ ൌ ሾݔଵ, ,ଶݔ … ,  ோሿ provides the input for each neuronݔ

in the hidden layer, labeled “Hidden Layer” in the figure. The hidden layer has Q 

neurons [1, 2, … , ܳ]. Inside each hidden neuron, there is a radial transfer function that 

produces output depending on the provided input (Wasserman et al., 1993). The hidden 

neuron’s output enters all neurons in the output layer, labeled “Output Layer” in the 

figure. Each neuron in the output layer essentially combines the received lines (the 
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outputs of all hidden neurons) in a weighted sum to provide the final network outputs. 

The output layer has N number of neurons, which is the number of outputs 

ሾݕଵ, ,ଶݕ … ,  .ேሿݕ

 

Figure 2.5: General regression neural network architecture. 

In Figure 2.5, [ݔଵ, ,ଶݔ … . ,  ோ] represents the network input parameters, R is theݔ

number of inputs, Q is the number of training cases, and N is the number of outputs. x 

provides input for each neuron in the hidden layer, where some mathematical steps are 

calculated to provide the outputs to the next layer (the output layer). Figure 2.6 shows a 

flow chart for the mathematical steps that are calculated inside each neuron in the hidden 

layer. Once the neuron receives the input x, the sum of the absolute values between x and 

the components of the vector ࢃ௜
ூ is calculated in the “Distance Function” to produce ܣ௜, 

as in Equation 2.10. The dimension of the input weight matrix	ࢃூ, as shown in Equation 

2.11, is QxR. Each row of ࢃூ is referred to as input weight vector associated with a 

corresponding hidden neuron. Then, the value ܣ௜ is multiplied by the bias constant B in 

the “Scaling Function” to provide ܽ௜, which is called the radial distance and shown in 
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Equation 2.12. The last step is to calculate the radial function outputs ݄௜ሺܽ௜ሻ to provide 

the neuron’s output	݄௜, which represents the hidden neuron output. 

 

Figure 2.6: The ith neuron at the hidden layer. 

In Figure 2.6, [ݔଵ, ,ଶݔ … . , ௜ࢃ ,ோ] represents the network input parametersݔ
ூ	is the 

input weight vector of the ith neuron in the hidden layer (dimension= 1xR), ܣ௜ is the 

distance function output (dimension= 1x1), B is the bias constant (dimension= 1x1), ܽ௜ is 

the scaling function output (dimension= 1x1), and	݄௜ is the radial function output. The 

bias B is responsible for the network sensitivity, which is directly calculated from a 

network parameter called the Gaussian width (GW). More detail about those two terms 

will be provided in the next subsection of this chapter. 

௜ࢃ 
ூ ൌ ሾݓ௜ଵ

ூ ௜ଶݓ		
ூ … ௜ோݓ.

ூ 		ሿ (2.9) 

௜ܣ  ൌ 	∑ หݓ௜௝
ூ െ	ݔ௝ห

ோ
௝ୀଵ  (2.10) 
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ூࢃ  ൌ

ۏ
ێ
ێ
ۍ
ଵଵݓ
ூ ଵଶݓ

ூ ଵோݓ	…
ூ

ଶଵݓ
ூ ଶଶݓ

ூ ଶோݓ	…
ூ

……………… . .
ொଵݓ
ூ ொଶݓ

ூ ொோݓ	…
ூ ے
ۑ
ۑ
ې
 (2.11) 

 ܽ௜ ൌ ௜ܣ ∗  (2.12) ܤ

 ݄௜ ൌ  ሺܽ௜ሻ (2.13)݀ܽݎ

As stated, the radial function output ݄௜	is a function of distance, which is 

presented as ܽ௜ in the GRNN hidden neuron. Figure 2.7 shows the general radial 

function, where the ܽ௜ represents the distance n from the center in the figure (as in 

Equation 2.14). Different types of radial functions are used as a radial transfer function in 

the RBNN. Buhmann et al. (2003) showed that the Gaussian function is the most popular 

radial function, thus it will be used in this study. Note that Equations 2.13 and 2.14 are 

the same; Equation 2.14 is a generalized form of Equation 2.13. 

 

Figure 2.7: Radial function. 

 ݄ሺ݊ሻ ൌ exp ቀെ
ሺ௡ି௖ሻమ

௥మ
ቁ ൌ exp ቀെ

ሺ௔೔ሻమ

ଵ
ቁ ൌ 	rad	ሺܽ௜ሻ (2.14) 

where : n is the distance from the function’s center. 

 c: the center of radial function (c=0). 

 r: the radius of the radial function (r=1). 

In Figure 2.8, ࢎ ൌ ሾ݄ଵ, ݄ଶ, ݄ଷ, ݄ொሿ represents the output from Q hidden neurons, 

which are provided to each neuron in the output layer. The figure shows the kth output 

neuron, where the sum of the dot product between the provided ࢎ and the output weight 
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vector ࢃ௞
ை is calculated and divided by the sum of ࢎ components (as in Equation 2.15). 

The output ݕ௞ essentially represents one of the network’s final outputs, where there are N 

outputs (࢟ ൌ ሾݕଵ, ݕଶ,…, ݕே]), and the output is a weighted sum for the components of the 

received	ࢎ. The dimension of the output weight matrix	ࢃை, as shown in Equation 2.16, is 

NxQ. Each row of ࢃை is referred to as a weight vector associated with a corresponding 

output neuron. 

 

Figure 2.8: The kth neuron at the output layer. 

In Figure 2.8, ࢃ௞
ை	represents the output weight vector of the kth neuron in the 

output layer (dimension= 1xQ), and ݕ௞ is the kth network output (dimension= 1x1). 

Equation 2.18 shows how the general kth network output is represented as a radial 

function of the input and weight vectors. 

௞ݕ  ൌ 	
∑ ௛೜
ೂ
೜సభ .௪ೖ೜

೚

∑ ௛೜
ೂ
೜సభ

 (2.15) 

ைࢃ  ൌ

ۏ
ێ
ێ
ۍ
ଵଵݓ
௢ ଵଶݓ

௢ ଵொݓ	…
௢

ଶଵݓ
௢ ଶଶݓ

௢ ଶொݓ	…
௢

……………… . .
ேଵݓ
௢ ேଶݓ

௢ ேொݓ	…
௢ ے
ۑ
ۑ
ې
 (2.16) 

௞ࢃ 
ை ൌ ௞ଵݓൣ

଴ ௞ଶݓ		
଴ … ௞ொݓ.

଴ 		൧ (2.17) 

௞ݕ  ൌ 	
∑ ൬௘௫௣൬ିቀ∑ ቚ௪೔ೕ

಺ ି	௫ೕቚ∙஻
ೃ
ೕసభ ቁ

మ
൰∙௪ೖ೜

೚ ൰ೂ
೜సభ

∑ ቆ௘௫௣൬ିቀ∑ ቚ௪೔ೕ
಺ ି	௫ೕቚ∙஻

ೃ
ೕసభ ቁ

మ
൰ቇೂ

೜సభ

 (2.18) 
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As mentioned previously, GRNN is a special type of RBNN because it is trained 

quickly and provides accurate results without having any optimization. The training 

process is done simply in two steps. First, define the Gaussian width (GW), which is the 

width of the Gaussian transfer function. Second, setting the values of ࢃூ and ࢃை to be 

the inputs and outputs, respectively, of the training cases. Each training case consists of a 

set of input x and output y. For the nth training case, the nth row of ࢃூ takes the input 

vector x, while the nth column of ࢃை takes the output vector y. The network has a fixed 

number of neurons in the hidden and output layers, which are set to Q and N, 

respectively. Since the radial output from the hidden neuron depends on the distance 

between x and ࢃ௜
ூ (Equation 2.13), the network provides outputs that are calculated as a 

weighted sum for the radial outputs of the closed training cases to the new input case, as 

in Equation 2.15. For example, if the new input vector x equals the weight vector	ࢃ௜
ூ 

(i.e., the same training cases are used as input), the sum of differences between their 

components will be 0 and leads the radial function’s output to be ݄௜ = 1. Then, 

multiplying ݄௜ by the output weight vector ࢃ௜
ூ produces exactly the component of the 

weight vector, which are the training outputs for that specific training case. 

The remaining question in constructing and training the GRNN is how to define 

the GW for such a network? Although constructing and training the GRNN is easy, the 

network does not work well at any GW value. Hence, this parameter is the most critical 

component when constructing the GRNN because it is the only parameter that needs to be 

determined by the user and its value affects the network performance. The following 

section presents the details for the GW and its importance for successful network 

performance. 

2.3.2.2 Network parameter (Gaussian width, GW) 

As stated, the GW determines the width of the Gaussian function, which is the 

transfer function in the hidden neurons. The importance of the GW is that when the 
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distance ܣ௜ equals the GW, the radial output ݄௜ = 0.5 (Equation 2.13), assuming the 

remaining components in the vector h are zeros. Thus, the network output ݕ௞ is dropped 

to 0.5 of the output training value saved inࢃ௞
ை. Hence, the GW essentially determines the 

distance around each training case where it is still able to provide radial output ݄௜, and 

eventually its contribution in predicting any input x. That is why the GW value 

determines the network performance and its prediction ability. However, there is no 

specific mathematical formula to define a proper value for the GW to make the network 

perform in the best way. 

To understand the exact mathematical meaning for the GW, let us take two 

different Gaussian functions with different GW values (GW1 and GW2), shown in Figure 

2.9. In the figure, the function with GW1 is narrower than that with GW2, and covers less 

space in the shown two-dimensional plot. Now, suppose the calculated scaling function 

ܽ௜ (Equation 2.12) at the hidden layer equals 4 (ܽ௜= n= 4). The radial output for this value 

(n=4) for the function with GW1 is almost 0, while it is almost 0.4 for the function with 

GW2. 

 

Figure 2.9: Two Gaussian functions with different GWs. 
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Now, which value between GW1 and GW2 provides more accurate results for the 

network at n equals 4? GW1 is good to be used as long as n is within the domain of 

another Gaussian function in the training space (i.e., another training case ࢃ௜
ூ	has non-

zero output for n=4). So, the prediction becomes more accurate than that with GW2, 

which in this case turns out to be overlapping with another training case in predicting the 

same point. On the other hand, if n is not within the domain of any other point in the 

training space, the function with GW2 is better to be used because the network with GW1 

provides output equals zero. For such a case where the network output is zero, this 

distance or space is called a dark or empty space because the network cannot predict 

outputs for any point in that space. It has been impossible until now to calculate the 

optimal GW for a specific application (Specht et al., 1991). Moody et al. (1989) proposed 

that the GW could be determined heuristically after normalizing the input data by testing 

GW values near the midpoint of input values. This, again, presents the importance of 

inputs normalization in the training process. 

The above discussion indicates that the proper GW is a trade-off between 

covering most or all grid space and achieving acceptably accurate prediction. Having 

narrow GW value could leave some dark spaces in the training space. Thus, the network 

is less efficient in predicting all inputs within the training space. On the other hand, larger 

GW decreases the accuracy of the predicted output because many neurons (i.e., training 

cases) are overlapping and firing for the same input. Firing means that the output of the 

neuron is not zero. In this case, any output is always a result of contributions from many 

neurons in high fractions, which decreases the accuracy of predicting a specific point in 

the grid space. Hence, this parameter needs to be chosen depending on the application so 

that the best network performance is achieved (Specht et al., 1991). 

In the context of the presented equations for the GRNN layers, the GW effect on 

the network performance is introduced through the bias B. The GW determines the bias B 

in Equation 2.19, and B shows that effect on the network in the scaling function 
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(Equation 2.12). From the radial function shown in Equation 2.14, the function ݄ሺ݊ሻ 

decreases to 0.5 at distance n equals to 0.833 from its origin. This value (0.833) is 

obtained in Equation 2.20 by solving the values in Equation 2.14. So, this parameter (B) 

is affected and changed by changing the GW of the function and provides another way to 

control the overall network performance. These calculations are from Wasserman et al. 

(1993).  By defining B in terms of the GW, we can control the generated network 

sensitivity and have more efficient performance. 

ܤ  ൌ  (2.19) ܹܩ/0.833

 ln ቀexp ቀെ
ሺ௡ሻమ

ଵ
ቁቁ ൌ lnሺ0.5ሻ → 	 ሺ݊ሻଶ ൌ െ lnሺ0.5ሻ ൌ ln ቀ

ଵ

଴.ହ
ቁ → 	݊ ൌ ටlnሺ

ଵ

଴.ହ
ሻ ൌ 0.833 (2.20) 
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CHAPTER III 

NEW METHODOLOGIES FOR ARTIFICIAL NEURAL NETWORK 
(ANN) WITH HUMAN MODELING 

Implementing an artificial neural network (ANN) to solve digital human modeling 

(DHM) problems requires solid construction of the network. Constructing the network 

includes three main steps: 1) defining the problem input and output sets (training cases), 

2) training the network using the training sets to simulate the targeted problem or task, 

and 3) testing the network performance before considering it for final use. This chapter 

presents new methodologies for automatically constructing the network with best 

performance. There are many types of ANN that are used in various system predictions. 

Thus, this research also analyzes and refers to the best candidate network to solve DHM 

problems. The chapter provides the following contributions: 

1. Selecting the proper type of ANNs to study DHM problems. General regression 

neural network (GRNN) is found to have advantages for handling DHM 

problems. 

2. Developing a semi-automated training and testing (construction) process. With 

the newly developed strategy, the network is automatically trained using any set 

of cases. Then, the performance of the built network is tested before it is used. 

3. Introducing a new automatic strategy for determining the Gaussian width (GW) 

parameter for optimal network performance for any DHM problem. 

4. Introducing task-based definition (i.e., task formulation) for the DHM 

applications using ANN. 

3.1. Selection of Network Type 

As mentioned in Chapter 2, for solving regression problems like DHM 

applications, there are two major types of ANNs: feed forward (FFNN) and radial basis 

(RBNN) networks. GRNN belongs to the RBNN type of networks, where the outputs 
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depend on the radial distance between the inputs and network weights inside the neurons 

in the hidden layer. Note that, given the many available variations of ANNs, selecting the 

appropriate form and associated parameters for a particular application can be more of an 

art than a science. Thus, one of the contributions of this work is the determination of the 

appropriate ANN and ANN parameters for application to DHM predictions. Many types 

of ANNs were used in the literature to solve and study various DHM problems, but 

applications of the GRNN to these problems are still limited. 

In this research, some initial work was done in comparing the predicted results 

from FFNN and RBNN for the task of human motion, which is discussed in detail in 

Chapter 4. The RBNN results were better than the FFNN results, because FFNN has 

memory and convergence problems when applied to problems with a large number of 

outputs. Human motion prediction and most DHM problems have a large number of 

outputs.  

Then, the accuracy of results produced from different types of RBNN was tested, 

and GRNN was found to have the most accurate results. In addition, by investigating the 

general advantages and disadvantages of various ANNs, GRNN was found to be the most 

appropriate for solving DHM problems. Therefore, the GRNN is the network chosen to 

be applied in this thesis. In general, using GRNN has the following advantages: 

1. Constructing and training quickly without memory or training time problems. 

2. Smoothing out the regression curve between the training grid points. The GRNN 

can predict any off-grid point by finding the weighted sum of the closest grid 

points to that point. Thus, it is able to predict the system behavior accurately using 

a small number of training cases. 

3. Providing realistic results without converging to a poor solution, because there is 

no iterative optimization in the GRNN construction. Poor convergence is one of 

the main limits when using FFNN and leads to unexpected results for some 

inputs. 
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4. Having a smaller number of heuristic network parameters to be determined in 

advance than any other type of RBNN. 

3.2. Semi-automated Network Construction Process 

When ANN is used for any application, the training process is the most 

challenging part of the network construction. In general, the training process starts with 

collecting the training cases in two large matrices. One matrix has the inputs, and the 

other the outputs. Then, the network parameters are set up, especially GW. Finally, the 

network is created and trained to predict the output that corresponds to the input. 

In anticipation of other users and potential integration within the Santos software 

(see Appendix A), training process steps are performed in this thesis using a proposed 

semi-automatic method. Testing the performance of the constructed network is also 

included in the proposed method. This method makes use of GRNN in DHM applications 

simple enough to be carried out by a person who is not familiar with the ANN 

development process. Figure 3.1 shows a schematic diagram for this new network 

construction process. 

 

Figure 3.1: Schematic diagram of the general automated steps in constructing the GRNN. 
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The four steps in the above figure are fully automated. The only manual part of 

the method is organizing the inputs of all training cases in one file for the task to be 

trained. For each training case, the values of the input parameters should occupy one 

column in the file. The entire process takes between 1 and 2 minutes. 

3.2.1 Training preparation 

As mentioned earlier, before the training starts, all training cases are combined in 

two matrices, one for each of the inputs and outputs. The inputs, in specific, are then 

normalized. Input normalization is done when using any type of ANN and for any 

application. A hyperbolic tangent sigmoid function (TSF) is used for the normalization in 

this research because it is the standard normalization function in ANN, as shown in 

Chapter 2. Figure 3.2 shows the TSF, which compresses the inputs to all be between -1 

and 1 (Vogl et al., 1988).The mathematical formulation for the function is shown in 

Equation 3.1. 

 

Figure 3.2: The hyperbolic tangent sigmoid function. 

ݕ  ൌ 	 ௘
మೣିଵ

௘మೣାଵ	
 (3.1) 
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Input normalization is important for proper network performance because it 

confines all the inputs from different types and ranges to between -1 and 1. Therefore, 

variation of the inputs is lower, which allows the network to be more stable in predicting 

and handling the outputs of different provided input values. In addition, determination of 

the network parameter (GW) becomes easier because of the uniform range of different 

inputs or features, as shown in Chapter 2. For example, the walking task, which is 

described in Chapter 4, has inputs that include velocity (with values between 0.8 and 1.6) 

and backpack weight (with values between 0 and 350). If the network is trained on these 

input ranges, the network sensitivity for the velocity and backpack changes will not be 

consistent. In other words, the network will not predict the changes well, because the 

ranges of the inputs are not similar. Therefore, once the normalization is completed, both 

velocity and backpack weights will have a range between -1 and 1. Then, the network 

handles the inputs better and provides more accurate prediction for any input change. 

3.2.2 New strategy for Gaussian width (GW) selection 

After training preparation is completed, it is followed by the training and testing 

stages of the network construction. This section discusses steps 2 and 3 of the 

constructing process illustrated in Figure 3.1. In addition, a new strategy is presented for 

selecting GW that improves the network performance. The strategy is embedded in the 

training and testing stages. 

As mentioned in Chapter 2, radial function output decreases to 0.5 when the 

difference between the inputs and neuron weight vector equals GW value. The inputs are 

all normalized between -1 and 1, so the maximum difference is 2. Therefore, the initial 

guess for the GW value is to be somewhere around the middle of inputs range. The inputs 

range is 2, which is the absolute difference between -1 and 1. 

When using GRNN, the user should define the GW for the network. Since there is 

no specific formula to calculate the best GW value for such task, many studies have 
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found GW by trial and error. This thesis proposes a heuristic strategy for automatically 

determining GW, as shown in Figure 3.3.  

 

Figure 3.3: Steps for automatically determining the GW of GRNN. 

In step 1, the collected normalized training data are separated into two parts, as 

shown in Figure 3.4. The first part is called the true training data and includes all training 

cases except three randomly selected cases. These cases are the cases that are used to 

train the network. The second part has the three excluded cases, and it is called test data. 

The randomly selected cases are chosen not to be one of the extreme training cases. 

Extreme cases are those that have inputs with the maximum or minimum training values 

(e.g., velocity equals 0.8 or 1.6 in the walking task). In other words, test data should not 

include any of the cases located on the boundary (corners) of the training grid (the grid 

space). That is because the GRNN is unable to extrapolate and predict any case outside 

its grid space. The network does not have a grid point for them, and they are considered 
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as new inputs for the network. Hence, they are used to test whether the network is trained 

well. 

 

Figure 3.4: Splitting collected training data. 

In step 2, 40 GRNNs are created or built, one for each of 40 different GWs. The 

GW values range from 0.05 to 2 in increments of 0.05, where this range represents the all 

possible GW values within the inputs range. The selected increment is small enough to 

exactly follow and specify the most accurate GW. Larger increments might pass the 

proper GW, while lower increments are useless because they are too small to have a 

notable effect on the produced network. The GW should also be positive. 

In step 3, for each created network, adjusted R-square values are calculated for 

the three testing cases. In addition, three other randomly selected on-grid cases (training 

cases) are evaluated by calculating their adjusted R-square values. The adjusted R-square 

value represents the degrees of accuracy between the predicted results from the created 

GRNN and the exact results (the collected results from the training source). Including the 

chosen three training cases in the testing phase is important for generalizing the 

prediction ability for the network. If the network is evaluated using only the three 

selected testing cases, its prediction might be good for those cases only. So, the trade-off 

between on-grid (training cases) and off-grid (testing cases) will be the best evaluation 

for the candidate network. Then, for each created network, the average R-square value is 
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calculated for the six chosen cases (the testing and training cases). This step is considered 

the test phase in the general network construction process. 

After all created networks are evaluated, the average R-square values that resulted 

in step 3 are compared. So, there are 40 averages of adjusted R-square values, each 

produced from the results of one network with GW value differs from the rest networks. 

Then, step 4 entails choosing the maximum value in the vector, which corresponds to the 

best GW. By the end of this step, the training and testing steps are finished, and the best 

GW value for proper network performance has been identified. 

The walking forward task, which is described in detail in Chapter 4, is used as an 

example to show how to apply the new proposed methodology. For that task, there are 12 

inputs, 390 outputs, and 55 collected training cases. Each training case is represented by a 

combination of inputs and their corresponding outputs. The training cases are first split 

into 52 true training cases and 3 for testing cases. Then, using the 52 training cases, 40 

GRNNs are built with GW values ranging from 0.05 to 2, in increments of 0.05. For each 

network, six adjusted R-square values are calculated for the three testing cases and three 

training cases (the cases were case 7, 23, and 41 in Table B.1). So, six cases are set to 

evaluate the performance of each created network, three from test cases and three from 

the training cases. The calculated R-square differs from one network to another, because 

each network has a different GW value. Figure 3.5 shows three adjusted R-square values 

resulting from three different networks for the same testing case. In the figure, the exact 

joint torque values from the training source (PD-Torque) are on the vertical axes, while 

the predicted joint torque values (GRNN-Torque) are on the horizontal axes. The shown 

R-square values are from three networks that were built using different GWs. The R-

square is obtained by plotting the predicted outputs from the network versus the exact 

outputs from the training source. Larger R-square values mean more accurate results (i.e., 

closer to the accuracy line). Thus, the figure shows that the second network, the network 

with GW=0.45, has the highest accurate result (highest R-square value) in predicting this 
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case. However, for such network to be the best in predicting a problem, the network 

should have the highest R-square values in predicting all testing cases. 

 

Figure 3.5: Three adjusted R-square plots for the same testing case resulting from three 
different GRNN networks; the networks differ in the used GW value. 

Next, the average of the six resultant R-square values is calculated. There are 40 

resulting average R-square values, which present the accuracy achieved form the 40 

created networks. For the walking task, the highest average value was 0.87, which was 

for the network with GW equal to 0.45. 

3.2.3 Training and saving the final network 

After the GW value for best GRNN performance is assigned, this GW is used to 

create and save the final network. In this stage, only one GRNN is created using the 
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extracted best GW (i.e., the network with highest testing results) and trained using the 

same true training cases. By completing this step, the automatic network construction 

process is finished, and the network is ready to predict any new inputs for the trained 

task. 

3.3. Task-based Digital Human Modeling (DHM) 

Applications Using Artificial Neural Network (ANN) 

As mentioned in the literature review, ANN is used in various applications, 

including those in the DHM field. While there are some applications for directly using 

ANN in posture prediction, it is not used for predicting full human motion in a task-based 

manner that has many inputs. For example, this thesis presents the prediction of a 

walking forward task, detailed in Chapter 4, where the task inputs include the step size as 

backpack weight. The applications in posture prediction and motion prediction also differ 

depending on the task to be performed. Hence, this thesis presents a successful use of 

GRNN in predicting various task-based DHM applications. The following provides a 

brief description of the successful use of ANN in this thesis to predict these various DHM 

applications. 

In Chapter 4, two different human motion prediction applications are predicted 

using GRNN. In motion prediction, the main and biggest problem is predicting all DOFs, 

which is a relatively large number, accurately. By using the GRNN, the proposed training 

strategy, the motion prediction is achieved in a highly accurate and realistic manner. 

Details about these applications will be presented in that chapter. 

Chapter 5 presents two other applications for using GRNN to predict human 

postures. This type of ANN has never been used in posture prediction problems or in the 

context of a large number of DOF. This application obtained some useful conclusions 

from that application and potential limitations on the current use of ANN in posture 

prediction problems. This chapter has more details about the applied tasks. 
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The third application, which is presented in Chapter 6, includes using GRNN to 

predict the weights for human PMs within the context of multi-objective optimization 

problems that control human posture prediction. Those PMs have not yet been fully 

studied; no one has studied the proper PM combinations (i.e., PM weights) for best 

posture prediction results. This thesis provides initial work on predicting the weights of 

PMs to make sure this could be a potential area for future research. This could lead to 

extracting and understanding the specific correlations between the PMs. In addition, new 

methodologies for extracting the weights of human PMs that contribute in posture 

prediction, which will be described later, are proposed where it shows strong potential for 

understanding what drives the human when performing different tasks. 



50 
 

 

CHAPTER IV 

NEURAL-NETWORK-BASED MOTION PREDICTION 

4.1. Introduction 

The majority of digital human modeling (DHM) applications in industry and 

academia require human interaction and dynamic simulation. Studying human dynamics 

or motion in specific is also critical for injury prevention and for better understanding 

human behavior. As mentioned in Chapter 1, predicting human motion is still immature 

in terms of computational speed and realistic behavior. In reality, human motion has 

many constraints and factors that make any developed model slow to produce or predict 

the motion. In addition, the lack of standard motion strategy also makes the prediction of 

realistic motion hard because people behave differently.  

However, there is new promise for embedding an artificial neural network (ANN) 

in direct prediction of human motion. This capability allows one not only to predict 

human behavior but to study more effectively how people behave the way they do. 

Although ANNs have been studied extensively and are currently applied to a variety of 

problems, their benefits have not yet been realized in the context of human-motion 

models. In this context, we find ANN to be computationally fast and to provide new 

insight into which articulated degrees of freedom (DOFs) play the most significant role in 

defining one’s motion. 

In general, although many have used ANNs to study specific aspects of human 

motion, the current state of the art does not demonstrate the use of ANNs for direct 

manipulation of joint angles in the context of a complete human model with a large 

number of DOFs. Thus, we propose not only exploring the use of ANNs for predicting 

whole-body motion but doing so in the context of a complete 55-DOF DHM. 

Furthermore, we demonstrate the ability to modify task parameters, such as range of 

motion and applied load. ANNs are coupled with optimization-based dynamic motion 
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prediction and thus alleviate the need for pre-recorded data. However, the proposed 

approach can be used with experimental data as well, should it be available. 

In this chapter, general regression neural network (GRNN) is used to predict 

motion for two tasks: 1) walking forward with a backpack and 2) jumping up on a box. 

These tasks are performed to examine ANN’s ability to predict human performance 

motion with different input parameters depending on the task. For both tasks, this chapter 

discusses: 1) definition of the task, training process, and network properties, 2) results 

compared statistically (objectively) and visually (subjectively), and 3) conclusions and 

current limitations. This chapter includes the following novel contributions: 

1. Implementing the proposed methodologies in Chapter 3 to predict two task-based 

motion predictions using GRNN. Two different tasks are defined and predicted 

properly. 

2. Demonstrating the ability to modify task parameters and see the results in real 

time. Every time the task inputs change, predictive dynamics (PD) takes between 

seconds to minutes to predict the outputs. Using and training the GRNN to predict 

the task provides immediate (real-time) outputs for any change in the inputs. 

3. Predicting a relatively large number of outputs of various forms: joint angles, 

joint torques, and ground reaction forces (GRFs). Thus, demonstrating the 

advantages of using GRNN compared to other types of ANN like feed forward 

neural network (FFNN). 

4. Coupling ANN with predictive dynamics to provide a faster predictive system. 

5. Developing an automatic algorithm to collect training cases for any motion task. 

The algorithm changes all required input files each time before running the PD, 

and saves the results (new training case) under a new name in a consecutive 

manner. 

6. Incorporating joint torques and GRFs as part of the predicted outputs beside joint 

angle control points. 
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4.2. Proposed Task Definition, Training Process, and 

Network Properties 

Task-based motion prediction means that motion is predicted depending on the 

task to be accomplished. Both tasks (walking forward and jumping up on a box) are 

defined separately in this section to specify the inputs and outputs of each task. Task 

inputs are called task parameters and vary according to user inputs to the predicted 

motion by the network. After definition of the task inputs and outputs is complete, the 

new proposed semi-automatic training and testing method, shown in Chapter 3, is applied 

to construct the best network for the specified task. During the training and testing 

processes, the network properties are defined and Gaussian width (GW) is determined to 

provide the maximum network performance. 

Training the network can be done using experimental data. However, gathering 

such data can be time consuming and costly, especially when considering different tasks 

and variations in subject anthropometry. In addition, some data, like joint torque, simply 

may not be available. Thus, we propose using PD to train the ANN. The PD algorithm 

formulation is described for each task separately. 

As a result, many training cases for different input combinations are generated to 

train the network at different input values or conditions. The work of collecting the 

training cases and training the network was done on a Windows 7 computer with an Intel 

® Core™ 2 processor and 8 GB of RAM. PD takes between 5 to 20 minutes to predict 

and generate each training case. The speed of computation is one of the issues that the 

GRNN could solve, if it works well. 

4.2.1 Walking forward 

The first motion task is walking forward with a backpack. This task is proposed 

for the following reasons: 1) to examine the general GRNN’s ability to predict a task with 

a relatively large number of training cases, inputs, and outputs, 2) to examine the 
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GRNN’s ability to predict two different types of outputs, 3) because it is one of the most 

common tasks when studying human motions, and 4) because the walking task is one of 

the mature tasks that are predicted by PD and validated by motion capture. 

The walking forward task has many parameters to be changed as network inputs. 

Before using GRNN to predict this task, initial work was done using FFNN to predict the 

same task. The FFNN did not work well for this task because it experienced memory 

problems when handling the large number of outputs and training cases. The network 

worked only when the number of outputs and training cases were reduced to a smaller 

number (around 50 outputs). Even with the smaller numbers, the results from this 

network were not totally accurate. Thus, RGNN is used to predict the walking forward 

task and the tasks in the following applications. As stated, the GRNN is used in this task 

to provide an example of its ability to handle complex DHM problems, like motion 

prediction, with a relatively large number of inputs and outputs. 

The variables that are considered and defined as inputs for the walking task 

include: 1) motion velocity, 2) backpack weight, 3) four lower-body link lengths (spine to 

hip, hip to knee, knee to ankle, and ankle to football), and 4) three body joint range of 

motions (ROMs) (their upper and lower limits). ROMs include the upper and lower limits 

for the hip, knee, and ankle, each at flexion-extension. Those specific joint ROMs are 

used because changing their limits has significant effects on the resulting walking task. 

Table 4.1 shows the input parameters for the training cases for this task. In the table, each 

of these parameters takes only one of the three listed values as a training value, except the 

velocity, which has only two values. Each training case uses a combination of the inputs 

(training inputs) where each input parameter could have any of the three values for each 

training case. If one or more of the input parameters has/have input value(s) other than 

the three listed values, the input case is considered an off-grid case or point (off the 

training grid or points). 
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Table 4.1: Input parameters for the walking-forward task. 

Input parameter  Value 1  Value 2  Value 3 

Velocity (m/s)  0.8  ‐‐  1.6 

Backpack weight (N)  0  175  315 

Link1 (Spine to Hip) (cm)  7.8  8.8  9.8 

Link2 (Hip to Knee) (cm)  43.5  44.5  45.6 

Link3 (Knee to Ankle) (cm)  39.5  42.4  45.4 

Link4 (Ankle to Football) (cm)  11.3  11.7  12.1 

Joint1 (Hip)‐ lower limit (degrees)  ‐123.3  ‐105  ‐90 

Joint1 (Hip)‐ upper limit (degrees)  8.7  5  2 

Joint2 (Knee)‐ lower limit (degrees)  5  10  20 

Joint2 (Knee)‐ upper limit (degrees)  149.7  130  110 

Joint3 (Ankle)‐ lower limit (degrees)  7.3  15  20 

Joint3 (Ankle)‐ upper limit  71.6  60  50 

 

In the table, the velocity represents the speed of walking for Santos and is 

measured in m/sec; the values in the table are the maximum and minimum speeds that an 

average person could walk. Training values use different weights for the backpack, but 

the results will not show any backpack visually. The effect of the backpack, however, 

will be shown on Santos’s vertebrae by the degree of bending. Value 3 for backpack 

weight in the table presents the maximum weight that an average person could carry. The 

three values of the link lengths are chosen to represent the average length for males, the 

average length for females, and the average length between the first two values. Lastly, 

the values of the joint angles are chosen so the first value represents the average male’s 

joint angle limits, both upper and lower. The second and third values were chosen 

randomly to narrow the ROMs in regular bases. As shown in the table, the second value 
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has ROM values less than the first value. The third value has narrower limits (less value) 

than the first two values. 

The network’s outputs include Santos’s joint-angle profiles (joint control points) 

for 55 DOFs and joint torques. For joint control points, there are six control points that 

have joint values at different times over the task. Given six control points for each DOF, 

there are 330 output values for joint angles. In addition, joint torques are considered for 

the six lower-joint DOFs (three for the hip, one for the knee, and two for the ankle), 

because they are the most highly articulated during the walking task. Assuming 

symmetry, the joint torques are evaluated at ten time steps during the walking task. This 

results in 60 additional output values. RGNN essentially provides a relationship between 

the inputs and the outputs, which can be called and evaluated quickly. The task is defined 

with 12 inputs and 390 outputs in total. 

After the task was defined, training cases are collected by having different input 

combinations. There are 52 training cases in which all the used inputs are represented by 

one of the three values shown in the table above. See Table B.1 (in Appendix B) for all 

input combinations used in all training cases. The PD mathematical formulations for this 

task are presented by Xiang et al. (2008). The conceptual formulation for this task is 

given in the optimization problem that shown in Equation 4.1: 

Find:                  joint angle profiles (control points)       (4.1) 

To minimize:      sum of joint torque-squared 

Subject to:      1) joint angle limits, 2) torque limits, 3) equation of motion, 4) 

dynamic stability, 5) foot strike position, 6) arm leg coupling, 7) self-avoidance, 8) 

ground penetration, 9) symmetry/continuity condition, and 10) ground clearance. 

In motion tasks like walking, there is a large number of training cases. Many files 

related to the inputs should be also changed in the PD folder before running each training 

case (i.e., changing some files to set the new input values before running the algorithm). 

Hence, an algorithm was developed for collecting the training cases automatically and 
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changing the required files. The algorithm consists of three steps: 1) looping over to 

collect the training cases, 2) changing all required files to set the new input values each 

time before running the PD for the next training case, and 3) saving the result file (new 

training case) under a new name in a consecutive manner.  

After the training process is completed, the new heuristic strategy for determining 

GW found that the best network performance at GW equals 0.45. Using this GW 

provides the best results for both on- and off-grid points (cases). To summarize, Table 4.2 

presents the general definition for the walking task definition as well as the constructed 

network properties. 

Table 4.2: The walking task definition and constructed network properties. 

Task 

Definition 

‐ Walking forward task with backpack 
‐ Task variables:  

 Velocity 
 Backpack weight 
 Link length ( spine- hip, hip- knee, knee- ankle, and ankle- football) 
 Joint ROMs (upper and lower limits) 

 Hip flexion extension: Lower (-123.3, -105, and -90); Upper (8.7,5, and 2) 
 Knee flexion extension: Lower (5, 10,and 20); Upper (149.7, 130,and 110) 

 Ankle flexion extension: Lower (7.3, 15,and 20); Upper  (71.6, 60,and 50)

Network 

properties 

‐ Inputs: 12 inputs 
‐ Outputs: 390 (Joint control points & torques) 

 joints control points (55*6)=330 
 Joint torques (6*10)=60 

‐ Training cases: 52 cases 
‐ Gaussian width= 0.45 

 

4.2.2 Jumping up on box 

The second task that this study tests for using GRNN in motion prediction is 

jumping on a box, shown in Figure 4.1. This task is proposed for the following reasons: 

1) to test GRNN’s ability to predict a task in which feet and hands should be located 

(reach) at specific places (i.e., addressing the contact points), 2) because jumping up on a 
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box is a complicated task that has many constraints, and it requires highly accurate results 

to be predicted, and 3) to predict ground reaction forces (GRFs) at both feet along with 

joint angle control points as outputs from the same network. Joint torque values are not 

included in this task because we need to study the network prediction ability for different 

types of outputs along with the joint angle control points. Predicting GRFs also is more 

important than joint torques for this task. 

 

Figure 4.1: Task of jumping up on a box. 

Box height is the main variable for this task because it has the most effect on the 

resulting task when it changes. Santos successfully shows the cause and effect when the 

height changes from 0.5 to 1 meter. He visually shows the changes by jumping higher 

when the box height is 1 meter. The PD fails to provide a feasible solution when box 

height exceeds 1 meter. Therefore, the box height limits for the training are 0.5 to 1 

meter. The ROMs are not included in this task because the range of variation in ROM 

that resulted in feasible solutions was rather limited. There are less feasible solutions for 

this task than walking because there is one more function to be minimized in this task; the 

task formulation will be described later in this section. Thus, this task has the following 
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input parameters: 1) box height and 2) four link lengths. Table 4.3 shows the five input 

parameters with their training values for the jumping up on a box task. 

Table 4.3: Input parameters and training values for the task of 
jumping up on a box. 

Input parameter  Minimum  Maximum 

Box height (cm)  50  100 

Link1 (Spine to Hip) (cm)  7.8  9 

Link2 (Hip to Knee) (cm)  38  43 

Link3 (Knee to Ankle) (cm)  39  39 

Link4 (Ankle to Football) (cm)  9  12 

 

The links in this task are the same links that were considered for the first task: 1) 

spine-hip, 2) hip-knee, 3) knee-ankle, and 4) ankle-football. The table also presents the 

input values that are used in the training cases. During training case collection, the box 

height value in the current case is a 5 cm increment from the previous one. The link 

lengths, however, only have two fixed training values. The minimum values are the only 

values used with the first set of training cases, where the box height is the only 

changeable value (collecting 11 cases). Then, the maximum values are used and fixed 

with repeating the same box heights to collect another set of training cases (another 11 

cases). There was no collected training case created using mixed link lengths from 

maximum and minimum values. 

Similarly to the walking task, jumping up on box task has two types of outputs in 

the collected training cases: joint splines (joint angle control points) and GRF, for both 

feet, whose maximum or peak values are the most important. PD provides a file for GRF 

with hundreds of values that are tracked over the task time and for both feet. Figure 4.2 
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shows the typical GRF plots, for both feet, that are produced from the PD at some 

training case. In each plot, there are hundreds of sampling points which are represented as 

points. Each sampling point has a force value that shows the GRF at the foot at specific 

time. 

 

Figure 4.2: The typical GRF plots, for both feet, at some training case. 

Most of the time, researchers are interested in the maximum or peak segment or 

region of the GRF at each foot. In addition, the right foot has zero GRF values during 

most of the task time, because it is free from any contact during most of the task time. 

Thus, to decrease the number of outputs, the maximum 20 GRF samples for each foot are 

extracted from the training files, and the network is trained to predict them as part of the 

outputs. Figure 4.3 shows the plots of the maximum 20 samples for the same training 

case that presented in Figure 4.2. The vertical axis represents the force values in (N), 

while the horizontal axis is for the sample number. The predicted samples are always 

arranged so that sample number 10 has the maximum value (the peak GRF value). The 

plots have different scales because the GRF values on both feet are sharply different. In 

summary, the total number of outputs is 370, 330 for joint splines (joint angle control 

points) and 40 for GRFs. 
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Figure 4.3: The plots of the maximum 20 GRF samples, for both feet, at some training 
case. 

In this task, the left foot is the foot that stays on the ground when Santos is 

jumping up. So, it carries Santos’s weight and the extra force from pushing himself up. 

This foot has greater GRFs than the right one, which is free at most of the task time. 

From the above figure, the peak GRF for the left foot is around 800 N, while that for the 

right foot is around 280 N. 

Now, the task definition is completed by having specific known inputs and 

outputs. In addition, training cases are collected for different on-grid points using the PD 

algorithm. The next step is to create and train the network, which is semi-automated (see 

Chapter 3). The training process is done to create a GRNN with 5 inputs, 370 outputs, 

and 22 training cases. See Table B.2 (in Appendix B) for all input combinations used in 

all training cases. The conceptual formulation for this task is given by the following 

optimization problem: 

Find:                   joint angle profiles (control points)                  (4.2) 

To minimize:      sum of joint torque-squared+ motion capture 

Subject to:     1) joint angle limits, 2) torque limits, 3) equation of motion, 4) 

dynamic stability, 5) foot strike position, 6) self-avoidance, and 7) ground penetration. 

After the automated training process was completed, the network had GW equal 

to 0.05, which provided the best achievable output prediction from the network. The GW 
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value in this task is much lower than in the walking task because the jumping up on a box 

task has fewer input parameters. Thus, the resultant grid space is much smaller for the 

jumping task, which needs smaller GW to cover all the spaces between the grid points 

(training points). Another reason for the smaller spaces or gaps is that the increment 

between input values for the same parameter in the jumping task is smaller than that in 

the walking task. So, the grid points are closer to each other in the jumping task. To 

summarize this task, Table 4.4 presents the general definition for the jumping up on a box 

task definition as well as the constructed network. 

Table 4.4: The jumping up on box task definition and constructed network properties. 

Task 

Definition 

‐ Jumping up on box 
‐ Task variables:  

 Box height 
 Link length ( spine- hip, hip- knee, knee- ankle, and ankle- football)

Network 

properties 

‐ Inputs: 5 inputs 
‐ Outputs: 370 (Joint control points & Ground reaction forces) 

 joints control points (55*6)=330 
 Ground reaction forces (2*20)=40 

‐ Training cases: 22 cases  
‐ Gaussian width= 0.05 

 

4.3. Results 

This section presents the predicted outputs from the GRNNs that were used in 

both tasks. These outputs are presented, evaluated, and compared with those exact 

outputs from the PD algorithm that were used to train the networks. Both tasks are 

discussed separately with relatively similar comparison strategies, and the results are also 

divided and shown in subsections for each task. Both subjective and objective results are 

evaluated and presented where both the visual and statistical results should be accepted in 

motion prediction tasks. The walking forward task has two types of outputs (joint angle 
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profiles and joint torques), which are evaluated separately. The jumping up on a box task 

also has two types of outputs (joint angle profiles and GRFs), which are also presented in 

the same way the first task is shown. 

4.3.1 Walking forward 

This part evaluates and analyzes some testing cases on the predicted walking task 

from the trained GRNN. Those cases include cases with on- and off-grid input points. 

The network was trained to predict the on-grid cases but not the off-grid. Six cases are 

tested and evaluated for this task: three on-grid cases and three off-grid cases. The three 

on-grid testing cases are shown in Table 4.5. 

Table 4.5: Walking forward input parameters for three 
on-grid testing cases. 

Input parameter  Case 1  Case 2  Case 3 

Velocity (m/s)  0.8  1.6  1.6 

Backpack weight (N)  0  315  315 

Link1 (Spine to Hip) (cm)  7.8  8.8  8.8 

Link2 (Hip to Knee) (cm)  43.5  44.5  44.5 

Link3 (Knee to Ankle) (cm)  39.5  42.4  42.4 

Link4 (Ankle to Football) (cm)  12.1  11.7  11.7 

Joint1 (Hip)‐ lower limit (degrees)  ‐123.3  ‐123.3  ‐123.3 

Joint1 (Hip)‐ upper limit (degrees)  8.7  8.7  8.7 

Joint2 (Knee)‐lower limit (degrees)  5  5  20 

Joint2 (Knee)‐upper limit(degrees)  149.7  149.7  110 

Joint3 (Ankle)‐lower limit(degrees)  7.3  7.3  15 

Joint3 (Ankle)‐ upper limit  71.6  71.6  60 
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As noticed, the input values for the cases in the above table are same for those 

used in the training cases in Table 4.1. Those three testing cases were used in the training 

process, and they are randomly chosen from the training cases. These cases are used for 

testing and comparing the network ability to predict any point after the training is 

complete. The accuracy of predicting these cases should be the same for the remaining 

untested training cases, because the network has the same behavior for predicting on-grid 

cases. If the network predicts the chosen cases well, predicting the other training cases 

will have the same degree of accuracy. Comparison is performed on each one of these 

cases between the predicted outputs from the network (testing outputs) and the exact 

results from the PD (training outputs). 

Other results that are shown in this study include three off-grid testing cases. 

Generally, studying those cases is more critical than on-grid ones, because they are never 

used to train the network and they test the general performance of the network for future 

prediction. Off-grid points always have less accurate results than the on-grid ones. Those 

testing cases are presented in Table 4.6, where their input values are different from those 

used to train the network. These cases are chosen to cover various input combinations. 

From the table, Case 1 has relatively the furthest input values from the training values. 

Case 2 and Case 3 also present other input combinations with different input values. The 

resultant accuracy for predicting these cases should be similar for any other off-grid 

cases. Comparisons for all testing cases, both on- and off-grid cases, are performed 

between the predicted outputs (results) from the GRNN and exact outputs (results) from 

the PD. 
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Table 4.6: Input variables for three off-grid testing cases. 

Input parameter  Case 1  Case 2  Case 3 

Velocity (m/s)  1.4  0.9  1.1 

Backpack weight (N)  220  63  315 

Link1 (Spine to Hip) (cm)  9  8  9.6 

Link2 (Hip to Knee) (cm)  44  43  45.4 

Link3 (Knee to Ankle) (cm)  41.4  45  43 

Link4 (Ankle to Football) (cm)  12  11.3  11.6 

Joint1 (Hip)‐ lower limit (degrees)  ‐98.6  ‐111  ‐90 

Joint1 (Hip)‐ upper limit (degrees)  2.2  6.5  4.5 

Joint2 (Knee)‐ lower limit (degrees)  8  16  19 

Joint2 (Knee)‐ upper limit (degrees)  146  127.2  112.3 

Joint3 (Ankle)‐ lower limit (degrees)  12  7  16 

Joint3 (Ankle)‐ upper limit  57  70  53 

 

Since it is visually impossible to represent the training grid for all 12 input 

parameters, Figure 4.4 shows the two-dimensional plot for the 12 input parameters. The 

velocity and backpack weight parameters have the maximum effect on the outputs. Thus, 

these two parameters are shown in the x and y axes, respectively. In the figure, the small 

blue points represent the positions of the grid points (training points). The colored stars in 

the figure represent the studied testing cases. The green stars are for the on-grid cases; 

they are located exactly on these blue points. The off-grid cases are represented by the 

red stars. The figure visually shows how far each test case is from the grid points. 

However, this distance could be more or less in the real 12-dimensional grid space. 
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Figure 4.4: Two-dimensional plot for the training grid of the 12 input parameters in the 
walking task. 

The comparisons for the testing cases were done in terms of resulting joint angle 

profiles, subjective (visual) motion, and joint torques. Each of those comparisons is 

included in the following separate subsections, in which they demonstrate both on- and 

off-grid testing cases. Plots of adjusted R-square values were drawn for the results (joint 

angles and torques) to demonstrate the accuracy of predicting the walking motion from 

the RGNN compared to PD. 

Regarding the off-grid testing cases, the PD algorithm was run to obtain those 

cases to compare the results, but they were not included in the training process. From a 

speed point of view, the GRNN needed a fraction of a second to provide the output, while 

PD takes between 5 to 30 min, depending on the initial conditions in its optimization, to 

provide the solution. 
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4.3.1.1 Visual results 

For any system, it is not enough to have accepted mathematical result without 

practical testing. Thus, let us represent the results visually to check whether the predicted 

motion results look realistic. On-grid testing cases are presented and compared first, 

followed by the off-grid cases. Figure 4.5 presents motion results for Case 1 of on-grid 

cases where both predicted GRNN and PD results are in the same figure. The exact PD 

testing case is shown in the upper part of the figure and the following figures, while the 

predicted motion from the GRNN is shown in the lower part of the figure. For each 

motion, snapshots were taken at 0, 33, 67, and 100% of the total task time.  

 

 

Figure 4.5: Visual results for on-grid Case 1 from PD and GRNN are shown in the upper 
and lower segments, respectively, for the walking task (0, 33, 67, and 100% of 

total task time). 

In the second and third segments of the motion in the above case, Santos shows 

some differences in the predicted motion compared to the exact motion. There is some 
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bending in his back in the GRNN result, which is barely notable in this case.  However, 

Santos’s body parts have the same pauses over the task time. His legs, hands, and head 

are matched in the predicted and exact motions. This small error in predicting on-grid 

cases is because the network is trained to predict the task in general by having some 

trade-off between predicting both on- and off-grid cases in accepted results. To improve 

the prediction accuracy, the number of training cases should increase. 

Case 2, which is shown in Figure 4.6, also shows matching between the predicted 

GRNN and exact PD motions. This case visually has more accurate results than Case 1. 

Velocity and backpack weight are at maximum values for this case, and that can be seen 

in the figure.  Santos bends his back forward as a result of having 350 N on his back, and 

his step is larger than that in Case 1. 

 

 

Figure 4.6: Visual results for on-grid Case 2 from PD and GRNN are shown in the upper 
and lower segments, respectively, for the walking task (0, 33, 67, and 100% of 

total task time). 



68 
 

 

From the two-dimensional training space plot in Figure 4.4, Case 3 has the same 

velocity and backpack weight values as Case 2. Figure 4.7 presents Case 3, which shows 

almost the same results as Case 2, because the only two notable factors, velocity and 

backpack weight, are exactly the same in both cases. These two cases differ in the last 

four ROM values, as shown in Table 4.5. On the other hand, there are slight differences 

between the two cases and the exact and predicted results for each case. 

 

 

Figure 4.7: Visual results for on-grid Case 3 from PD and GRNN are shown in the upper 
and lower segments, respectively, for the walking task (0, 33, 67, and 100% of 

total task time). 

The small differences in the predicted results from the GRNN and those from the 

PD are not critical. The GRNN provided accurate results for the on-grid cases; the cause 

and effect is notable in each case. The network also provided a solution in fractions of a 

second, which is an important improvement that could lead to on-line training for any 

task. Moreover, the overall motion produced by GRNN is visually acceptable. 
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Now, the three off-grid testing cases are compared visually and are expected to be 

less accurate than the on-grid cases, but should be accepted nevertheless. Case 1 is shown 

in Figure 4.8, which shows accurate predicted motion from the GRNN, which is very 

similar to the exact result. The visual result for this case is accurate and comparable to 

what was produced in the on-grid cases. Santos’s body links also have an excellent match 

between GRNN and PD at the same time segment, as shown in the figure. 

 

 

Figure 4.8: Visual results for off-grid Case 1 from PD and GRNN are shown in the upper 
and lower segments, respectively, for the walking task (0, 33, 67, and 100% of 

total task time). 

Figure 4.9 shows the second case, Case 2, of off-grid testing cases. Santos’s back 

is almost straight, which is a reflection of the case input where the backpack weight 

equals 63 N; the short step follows the velocity value, too. Only at the third segment of 

the motion is there some bending in Santos’s back that is different from what it should 

be. This was a small error in prediction because it was not clear over the dynamic motion. 
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Figure 4.9: Visual results for off-grid Case 2 from PD and GRNN are shown in the upper 
and lower segments, respectively, for the walking task (0, 33, 67, and 100% of 

total task time). 

Like the previous off-grid testing cases, the GRNN provided accepted and 

accurate results for Case 3, which is shown in Figure 4.10. Santos’s back and hands 

might show some differences from the PD motion, but his motion is still correct and 

similar for both motions. Generally speaking, the visual results for predicting the walking 

with backpack task using GRNN was realistic and accurate (based on subjective 

validation). Santos was able to walk in a realistic manner in all shown testing cases. In 

this section, Santos’s motions were compared, and his back is similarly bent for GRNN 

and PD in all cases. Even though there are two different types of outputs, the visual 

representation for the predicted joint control points was successful. To summarize, the 

real time and accurate prediction for any inputs combination is the main achievement of 

predicting this task. The network prediction ability should be similar for any on- and off-

grid cases other than those presented in this study. 
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Figure 4.10: Visual results for off-grid Case 3 from PD and GRNN are shown in the 
upper and lower segments, respectively, for the walking task (0, 33, 67, and 

100% of total task time). 

4.3.1.2 Joint-angle profiles 

From the total predicted outputs (i.e., the network outputs), which are 390 

outputs, joint angle profiles (control point values) consist of 330 out of the 390 outputs. 

These 330 outputs represent the control point values for the 55 DOFs. These outputs are 

divided where each DOF has six values (control points) to shape the joint angle values 

over the motion time profile. In this part of the results section, an adjusted R-square value 

is plotted for those joint angle profiles between the predicted values from the GRNN and 

the exact ones from the PD algorithm. The plots statistically show the degree of the 

accuracy for the predicted outputs from the constructed network by presenting the R-

square value for each case. The plots for the three on-grid testing cases are shown Figure 

4.11, which also includes the adjusted R-square values for these cases. The plots are for 

the joint control point values (joint angle values) for the trained GRNN versus the exact 

values form the training cases. 
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Figure 4.11: Adjusted R-square values for joint angle profiles at the three on-grid testing 
cases. 

The adjusted R-square value was above 0.99 for all testing cases, as shown in the 

figure, which indicates that the network was able to predict joint profiles successfully 

with statistically high accepted results. A similar accuracy level is obtained for the other 

on-grid point. The presented cases are chosen, as mentioned, randomly from among the 

training cases, and the general prediction trend is similar for all training cases. On the 

other hand, these results were expected for the on-grid testing cases, because the network 

was trained to predict them (i.e., seen data). 

Now, off-grid testing cases are compared in the same way. Figure 4.12 shows the 

adjusted R-square plots and values for the three off-grid testing cases. Surprisingly, 

similar highly accurate results were achieved for the off-grid testing cases, which had 

unseen, untrained input values. The adjusted R-square values also were above 0.99, 

suggesting that accurate correlations between different inputs were generated by the 

network. 
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Figure 4.12: Adjusted R-square for joint control point values (55 DOF) of three off-grid 
testing cases. 

In general, Figure 4.12 shows that the joint angle profile points on the accuracy 

lines were spread more than those in on-grid testing cases, especially for Case 1. Even 

though the R-square value for this case is similar to the others, this case shows worse 

network-predicted results because the points are distributed away from the accuracy line. 

Case 1 had that result because it had the furthest input values from the training cases (grid 

points) with respect to backpack weight and some joint angle limits, as shown in Figure 

4.4 and Table 4.6. However, the visual result for Case 1, Figure 4.8, does not show any 

visual problem in matching the exact results.  

From the previous results, it was found that the adjusted R-square values were 

high. The R-square values were around 0.99 for all cases even with that relatively large 

number of outputs. So, the network was generalized successfully, at this point, by 

providing outputs for the off-grid testing cases with high accuracy like the on-grid cases. 

Distribution of the joint angle profiles in the off-grid testing cases indicated some kind of 

inaccuracy between the predicted and exact results for the motion profile. However, the 
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visual results showed highly accepted results for these off-grid cases, which make the 

statistical results accepted too. In general, the trained GRNN showed a similar trend in 

predicting many other off-grid points. 

4.3.1.3 Joint torques 

This section discusses the second part of the results, which are some joint torques 

for this task. Those joint torques are the six torques at the lower-body joint DOFs (three 

for the hip, one for the knee, and two for the ankle), assuming symmetry, because they 

are the most highly articulated during the walking task. The joint torques are evaluated at 

ten time steps during the walking task, which resulted in 60 additional output values.  

Plotting and calculating adjusted R-square values is the only way to compare the 

predicted results from the GRNN with those exact or actual values from the PD for this 

portion of the results. Starting with on-grid testing cases, Figure 4.13 shows those 

adjusted R-square values for the three on-grid testing cases in which each plot has all 60 

output torque points. 

 

Figure 4.13: Adjusted R-square for six torque values with on-grid cases. 
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The points are mostly on or close to the accuracy line for all cases. The R-square 

values are all above 0.94, and the accuracy is acceptable in terms of the general output 

values. The predicted torques, however, were not quite as accurate as the joint angles, 

because each joint has a large range of torque values. Moreover, there are many ranges 

for torque values at different joints (i.e., some of them have a range of values between -

500 to +500 N.m, while others are between -100 to +100 N.m). On the other hand, the 

joint angles are all measured in radian (rad), which is between +6.28 rad to -6.28 rad. For 

example, the torque values for Case 3 in Figure 4.13 are between around -80 to + 170, 

while the joint angle values for the same case in Figure 4.11 are around -1 to +2.  

Hence, the GRNN could easily determine the range of the outputs for the joint 

angles and predict it with small error, but not with the torques. The general network 

prediction with small error leads to small error in joint angle prediction because the range 

of angle values is small and the produced error is small correspondingly. Large error is 

produced in torque prediction because their ranges are large and affected more than the 

angles by the prediction errors. In addition, the different ranges of torques that are at 

different joints increase the probability of error occurrence for the joint torque values. 

Regarding the accuracy among the torque plot results, Case 1 is found to have lower R- 

square value than the other two testing cases. The reason for that, again, is that Case 1 is 

further from the grid points than the other testing cases. 

Figure 4.14 shows adjusted R-square values for the three off-grid testing cases 

between predicted torques from the network and actual PD output torques. The plots in 

the figure show that the points are close to the accuracy line in all cases, even though the 

accuracy was not very high and around 0.95 for Case 1 and Case 3 and 0.88 for Case 2. 

Joint angle profiles showed successful results visually even though they were more 

distributed than the torque values. Moreover, the adjusted R-square values are considered 

statistically high for those off-grid plots. 
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Figure 4.14: Adjusted R-square for six torque values (hip, knee, and ankle joints) for the 
three off-grid training cases. 

Overall, the torque results are considered acceptable, especially because they are 

incorporated with other outputs in the same network. The point clusters or distributions 

were very close to the accuracy line, and the adjusted R-square values were acceptable. 

The general joint torque results have lower accuracy than the joint control points because 

of the variation in the joint torque values in the training cases. Having two different types 

of outputs also decreases the accuracy of the network prediction capabilities. 

In summary, six different cases were studied, three each for on- and off-grid 

points, and the results of the GRNN were compared with those from the PD algorithm. 

The motion predicted using the GRNN was realistic and accurate (based on subjective 

validation). Since there are two types of outputs in the same network (joint angle profiles 

and joint torques), each was studied separately. Santos walked in an accepted way and 

showed similar outputs to the exact ones by subjectively comparing the joint angle 

results. Both comparisons showed success in predicting the motion for both tasks by the 

network. However, the accuracy of predicting joint torque control points was lower than 
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that in joint angle control points. In general, torque results were also accepted and 

comparable for both on- and off-grid testing cases. 

4.3.2 Jumping up on a box 

As described in the task formulation section, the task of jumping up on a box has 

fewer inputs than the walking task, which suggests that more accurate results are 

expected to be achieved. On the other hand, having two different types of outputs could 

decrease the accuracy of output prediction. In this section, four testing cases for the task 

of jumping up on a box are evaluated and analyzed: two on-grid cases and two off-grid 

cases. Like the walking task, the outputs of these testing cases are evaluated and 

compared between the GRNN predicted results and exact PD results. 

On-grid cases are presented first to check the performance of the GRNN using the 

cases that it was trained to predict. The on-grid prediction should be accurate and match 

the PD results. These on-grid cases are shown in Table 4.7. These cases are chosen 

randomly from the training cases, because the network prediction ability for all on-grid 

cases is similar. So, testing any on-grid case is an indication of the general network 

prediction for all on-grid cases. 

Table 4.7: Input variables for two on-grid testing points. 

Input parameter  Case 1  Case 2 

Box height (cm)  0.65  0.9 

Link1 (Spine to Hip) (cm)  9  7.8 

Link2 (Hip to Knee) (cm)  38  43 

Link3 (Knee to Ankle) (cm)  39  39 

Link4 (Ankle to Football) (cm)  9  12 
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Now, off-grid testing cases are presented for this task. These cases were expected 

to have very accurate results, but less accurate than the on-grid cases. Table 4.8 includes 

input values for both off-grid testing cases. These cases have input values that differ from 

the training values but are within the limits of the training space that were shown in the 

task definition section. 

Table 4.8: Input variables for two off-grid testing points. 

Input parameter  Case 1  Case 2 

Box height (cm)  0.68  0.92 

Link1 (Spine to Hip) (cm)  8.2  8.8 

Link2 (Hip to Knee) (cm)  40  42 

Link3 (Knee to Ankle) (cm)  39  39 

Link4 (Ankle to Football) (cm)  10  11 

 

Like in the walking task, these off-grid cases are selected randomly, where there 

is an infinite number of testing cases. These two cases are chosen to have input values 

within the grid space but furthest from the training cases. In other words, the box height 

in the training cases have a 5 cm increment between the training cases (see Table B.2). 

Thus, those testing cases with box heights that equal 0.92 and 0.68 are further from the 

grid points than 0.61 or 0.99. The other inputs also have values in between the training 

values, but not the training values themselves. Therefore, these chosen cases are 

relatively some of the furthest points from the training cases, and should have the least 

accurate predicted outputs from the network. So, predicting these cases well means that 

the all other possible inputs are also predicted well, even better than the results of these 

cases. 
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4.3.2.1 Visual results 

Each one of the presented on- and off-grid testing cases is visually compared by 

comparing the results between the predicted motion profile from the GRNN and the exact 

motion from the PD algorithm. As shown in Table 4.7, there are two on-grid testing 

cases. Case 2 has a box height larger than Case 1, and this will be evident in the visual 

results for both cases. Figure 4.15 presents the visual result for Case 1. The upper and 

lower parts represent motion segments over the task time for GRNN and PD, 

respectively. The total task time is approximately 1 second, and segments are taken at 0, 

25, 50, 75, and 100% of total time. Even though there are some differences in the scale of 

the snapshots for both motions, they actually have the same behavior over the task time, 

including the height of the feet and hand positions. The behavior was evaluated visually, 

and Santos performed the task in the exact way in both results. 

 

 

Figure 4.15: Visual results for Case 1 on-grid from GRNN and PD over the motion 
profile of the task (0, 25, 50, 75, and 100% of total task time). GRNN is 

shown in the upper portion of the figure. 
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Similar results are noticed in Case 2, which is shown in Figure 4.16. The 

difference in the reached height at the end of the task between Case 1 and 2 is evident; it 

is higher in Case 1. There were no differences in the motions from GRNN and PD in 

Case 2. 

 

 

Figure 4.16: Visual results for Case 2 on-grid from GRNN and PD over the motion 
profile of the task (0, 25, 50, 75, and 100% of total task time). GRNN is 

shown in the upper portion of the figure. 

As shown in Table 4.8, there are two off-grid testing cases. The off-grid cases are 

compared in the same way the on-grid cases were tested. These two off-grid testing cases 

are shown in Figures 4.17 and 4.18, where both figures indicate identical results from 

both GRNN and PD. In Case 1, which is shown in Figure 4.17, there is complete 

matching between GRNN and PD over all motion segments. All body motions were 

identical in terms of Santos’s limbs and back as well as his final position. 
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Figure 4.17: Visual results for Case 1 off-grid from GRNN and PD over the motion 
profile of the task (0, 25, 50, 75, and 100% of total task time). GRNN is 

shown in the upper portion of the figure. 

Figure 4.18 shows the GRNN and PD motion results for Case 2. Santos’s hands 

and feet from the predicted motion were at the exact locations that the PD results provide. 

Throughout the motion times that are shown in Figure 4.18, his feet, hands, and all other 

body segments match the PD motion result. In general, prediction of all on- and off-grid 

cases was visually successful and accurate as far as the final positions for Santos’s hands 

and feet. The network was able to predict the motion for all testing cases very accurately, 

which means that this ability is also applied for any other testing case. This enhances the 

GRNN’s ability to predict tasks with very accurate performance requirements like this 

task. There are contact points (for the hands with box, and the feet with ground and box) 

that Santos should touch exactly and accurately, and the network successfully achieved 

that. 
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Figure 4.18: Visual results for Case 2 off-grid from GRNN and PD over the motion 
profile of the task (0, 25, 50, 75, and 100% of total task time). GRNN is 

shown in the upper portion of the figure. 

4.3.2.2 Joint-angle profiles 

The visual results showed a high matching between the predicted motion from the 

GRNN and the exact PD motion. Like in the walking task, this section compares the 

accuracy of the network prediction for the task of jumping up on a box statistically. 

Figure 4.19 shows the on-grid testing cases that were presented above in the visual results 

section. Those cases should have more accurate results than the off-grid ones, because the 

network was trained to predict them exactly and adjusted correspondingly. The adjusted 

R-square values for these cases are high, as shown in the figure. The predicted points are 

all on the accuracy line or close to it at both cases. 
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Figure 4.19: Adjusted R-square for the joint control point values of the two on-grid 
testing cases. 

Figure 4.20 presents adjusted R-square values for the two off-grid testing cases. 

Both cases have adjusted R-square value around 1, which show the high degree of 

accuracy in predicting the both cases. The high R-square values for off-grid testing cases 

because the task has small number of inputs (5-inputs) which allows the network to 

predict the task accurately. The plot results match with what was seen in the visual 

figures above, which also show subjective matching between the predicted and exact 

results. For each plot, the axes represent GRNN joint splines (joint control points) at the 

horizontal line and PD joint control points for the vertical line. 

 

Figure 4.20: Adjusted R-square for the joint control point values of the two off-grid 
testing cases. 

In general, adjusted R-square values for joint control points are relatively high in 

all presented motions in this task. All on- and off-grid testing cases were predicted 
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accurately, where all adjusted R-square values were either 1 or around that. These results 

are obtained in more accuracy than for the walking task, because the jumping on a box 

task has a smaller number of inputs, and small increments for the inputs between the 

different collected training cases. 

4.3.2.3 Ground reaction force (GRF) 

The second part of the network’s predicted outputs is the maximum GRFs on both 

feet. As described in the task definition in section 4.2.2, the network was trained to 

predict the peak values of the GRFs at each foot. The peak values are presented by 20 

points or a sample of times that have the maximum GRFs on the foot over the task time. 

So, there are 40 outputs from the network that represent the 20 maximum GRFs at the 

right and left feet, respectively. To show how the GRFs are presented in this task, Figure 

4.21 shows the predicted GRFs from the GRNN on the left and right feet for Case 1 in 

off-grid testing cases. The vertical axis represents the force values in (N), while the 

horizontal one is for a sample number. The predicted samples are always arranged so that 

sample number 10 has the maximum value (the peak GRF value). The plots have 

different scales because the GRF on both feet are sharply different. 

 

Figure 4.21: The maximum 20 GRF values over the task time for the predicted off-grid 
testing Case 1. 
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Like joint angle control points comparison, the accuracy of the predicted GRF 

values from the GRNN should be checked and evaluated. This section presents the 

adjusted R-square values for the predicted GRFs versus exact PD results for all on- and 

off-grid testing cases. The on-grid testing cases are evaluated first in Figure 4.22. Both 

adjusted R-square values are equal to 1, which means there is a complete match between 

the exact PD and predicted GRNN outputs for GRFs. 

 

Figure 4.22: Adjusted R-square for GRF values (at right and left feet) between PD and 
GRNN for two on-grid testing cases. 

The adjusted R-square values in the figure present outstanding prediction for 

GRFs and superior accurate results from those achieved for joint torques in the walking 

task. Both on-grid cases have completely accurate results, R-square equals 1 for both 

cases. This high accuracy result indicates that even the off-grid results are accurate too.  

The outstanding accuracy for the on-grid testing cases are obtained because of the 

following reasons: 

1. Using a smaller number of inputs, which produces lower dimension for the task 

(less grid space). In lower grid dimension, the training points on the grid are 

closer to each other, which increases the accuracy of prediction. 
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2. Using small increments between different training cases. Thus, even the 

prediction for the points in between the training cases becomes more accurate. 

3. Resulting GRFs from different training cases are similar (have low variation). So, 

the low variation allows the network to be trained to predict these outputs better. 

After testing the on-grid cases, off-grid cases are presented in Figure 4.23. R-

square values for these off-grid testing cases are high. The R-square value in Case 1 is 

around 1, while it is exactly 1 in Case 2. The value of 1 for R-square in Cases 2 occurs 

because the GRF values have small variations over the training grid, and so the network 

predicts them accurately. In the figures of on- and off-grid testing cases, there are two 

separate clusters located on the accuracy line. Those clusters represent the left and right 

feet GRFs, where the ranges mentioned above are noticed and successfully handled by 

the network. 

 

Figure 4.23: Adjusted R-square for GRF values (at right and left feet) between PD and 
GRNN for two off-grid testing cases. 

Unlike the accuracy achieved for joint torque control points in the walking task, 

adjusted R-square values for the GRFs in this task show highly accurate results. The 

reasons for this accuracy were already mentioned above. As seen in the GRFs plots, all 

predicted points were exactly on the accuracy line for all cases. 



87 
 

 

In summary, the obtained accuracy for predicting this task was higher than that in 

the walking task. For this task, four different cases were studied, two each for on- and 

off-grid points, and the results of the GRNN were compared with those from the PD. 

Having two different types of output did not affect the accuracy of predicting both types. 

Unlike in the walking task, predicting both outputs was highly accurate in this task. This 

task already required having higher accuracy to solve the contact point issue, where the 

network did not have any problems in predicting those contact points (locations of the 

contact between the hand and the box and the feet and the box). In conclusion, this task 

was an indication of the outstanding accuracy that can be achieved by the GRNN if it is 

trained well for such a task (having small increments between input values in the training 

grid). 

4.4. Discussion 

In this chapter, the new presented methodologies in Chapter 3 were applied to 

predict human motion prediction using GRNN. Constructing, training, and selecting the 

GW, as well as testing the GRNN network were all performed automatically to maximize 

the prediction ability for two motion tasks: walking with a backpack and jumping up on a 

box. Each one of these tasks had its own GRNN that was automatically constructed with 

maximum performance for that task. The predicted results from the constructed GRNNs 

were tested and compared with the exact results from PD to evaluate the network 

performance. Predicting the results of both tasks was subjectively and objectively 

accurate and fast. The accurate results were also related to the deterministic nature of 

predictive dynamics. 

The studied motion tasks were chosen to examine GRNN’s ability to address 

different issues. The walking task has a relatively large number of outputs and 12 inputs, 

and there are two different types of outputs. The network was able to accurately predict 

all outputs from the different types of this task. Jumping up on a box is a complicated 
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task with many constraints. This task also needs high accuracy in predicting its outputs, 

because there are contact points between the hands and feet with the box over the task 

time. The constructed network for this task addressed all these issues successfully with 

outstanding fast and accurate results. 

The general trend in predicting the presented motion tasks using GRNN was 

producing fast and accurate results for any new input combination within the grid space 

(training space). This trend applied when any on- or off-grid input was fed into the 

network. The results from this chapter prove the assumption of using ANN to predict 

human motions realistically and quickly. The issues in the presented tasks in this chapter 

were addressed successfully by the GRNN. Thus, the use of GRNN might be generalized 

over many other motion tasks. Therefore, there is a great potential for GRNN to be 

widely used in real-time, task-based motion prediction and to perform like a human brain, 

developing and training continuously. 

Applying the new methodology for selecting the network GW depending on the 

task was valid and logical. It was validated by the successful testing of various on- and 

off-grid results. The selected GW value at each task also reflected the dimension of that 

task (number of inputs), where larger input space needs larger GW value to cover the grid 

space properly. The best GW value equaled 0.45 for walking task, while it was 0.05 for 

jumping up on a box. 

The two predicted tasks in this chapter had different types of outputs. The results 

of predicting these different outputs showed that having two different types of outputs 

decreases the general prediction capabilities for the network. However, the accuracy of 

output prediction depends on the variation in the values of that output. The predicted 

torque values in the walking task had the least accurate results because their values had 

the largest variation in the training cases. 

In the jumping up on a box task, the high accuracy in predicting the task results 

points out the usefulness of GRNN for DHM applications. This task is more complicated 
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than the walking task, but the network predicts it more accurately because this task has a 

smaller number of inputs. Therefore, training the network to accurately predict such a 

complex task is doable once the network is trained well and the task inputs are well 

defined. 

On the other hand, there are some challenges and limitations for using ANN in 

motion prediction, including: 1) professional and automatic task definition, 2) the optimal 

number of training cases for a task, and 3) extrapolation of prediction capability for off-

grid points. The third limitation, however, is not critical at this point because we used 

extreme combinations of inputs during the training stage so the network could produce 

acceptable results for any feasible inputs. 
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CHAPTER V 

NEURAL NETWORK-BASED POSTURE PREDICTION 

5.1. Introduction 

Researchers have studied many aspects related to human posture prediction in 

which many factors take part and control production of realistic posture. Since people 

simply behave differently, some strategies were found to study how and why people 

choose their postures in order to reproduce these postures correctly. However, human 

postures are considered learned skills, where there are an infinite number of postures for 

an infinite number of conditions and tasks. Hence, studying posture prediction in the 

general scope is critical to eventually understanding the strategies that people use when 

they intend to do a task. 

Human posture prediction was developed based on two main approaches. The 

first one involves prerecorded data using motion capture systems combined with 

anthropometric data and functional regression models. The second approach involves 

real-time inverse kinematic optimization-based posture prediction based on some 

objective functions (performance measures, or PMs). The conceptual formulation of the 

second approach is presented in the following optimization problem: 

Find:                 Joint angles                                                                             (5.1)           

To minimize:     One or more performance measure(s) (e.g., joint torque, joint 

displacement, etc.).                                                                                                          

Subject to:     Distance between finger-tip (end effector) and target point=very 

small value.                                                                                                                               

On the other hand, showing cause and effect in the motion capture approach is 

limited. For example, if some joint range of motion (ROM) changes, the produced 

posture does not change. In the inverse-kinematic approach, more cause and effect is 

obtained. However, this approach does not guarantee realistic posture results for all tasks 

and conditions because it depends on solving an optimization problem that could produce 
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poor results for some problems. Therefore, both approaches might be used as bases for 

some prediction tools to predict more generalized and solid human postures. As one of 

these potential tools, artificial neural network (ANN) has powerful prediction capability. 

This capability could be combined with either one of the developed approaches to 

develop a more mature posture prediction strategy that works well for any task under any 

condition. 

Generally, predicting human postures based on the task to be accomplished would 

lead to understanding and extracting the factors or controls that drive human performance 

(performance measures, PMs). This extraction might be achieved using the network that 

predicts postures by either connecting the network neuron values to these performance 

measures, or predicting these performance measures directly as outputs from the network. 

The previous work for ANN in posture prediction showed promise. Studies used different 

types of ANN, but not the GRNN. Thus, it is important to evaluate GRNN performance 

in the context of optimization-based posture prediction problems. So, this thesis presents 

the use of GRNN to predict human posture for the following reasons: 

1. To further investigate potential issues when using GRNN to simulate tasks that 

involve contact constraints or other conditions involving Cartesian locations. 

2. To provide initial work in posture prediction to discover the limitations on using 

GRNN in this digital human modeling (DHM) problem. 

3. To provide an initial investigation providing a platform for further study of ANN 

with posture prediction (i.e., evaluation of performance-measure combinations). 

4. To demonstrate the feasibility of using a large number of outputs (including the 

use of joint angles as well as joint torques). 

In this chapter, GRNN is used to predict human posture for two tasks: touching a 

point in front of the body with and without external force on the hand. This study also 

provides initial and promising work toward having a posture prediction strategy that 

guarantees provision of real postures for any task under any condition. The network 
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outputs are the joint angles in the task of touching a point in front of the body without 

external force. The joint angles and torques are the network outputs in the task of 

touching a point with external force. This study is superior to previous studies on posture 

prediction using ANN because it has a large number of outputs for the upper body, 

increasing the accuracy of mimicking the real human body in Santos’s design. The 

following contributions are achieved in this chapter: 

1. Two task-based posture predictions, touching point with and without external 

load, for a 55-DOF human model using ANN. 

2. Incorporation of joint torques as part of the predicted outputs. 

3. The first use of GRNN in task-based posture prediction with highly reasonable 

results. 

4. Prediction of a relatively large number of outputs with different types (joint 

angles and torques) for a 55-DOF human model. 

5.2. Proposed Task Definition, Training Process, and 

Network Properties 

This section presents the definition for the tasks that will be used to train the 

GRNN for posture prediction. In addition, the training process and the network’s inputs, 

outputs, and properties will be described. There are separate subsections for both applied 

tasks, posture prediction for touching a point in front of the body with and without 

external force. 

Collecting training data for both tasks was done using the Santos software. The 

software has a well-developed and fast posture prediction tool that is used to predict 

points around the body and predict them with extra conditions like external loads. Posture 

prediction in the Santos software is achieved by solving the optimization problem that 

was shown in the introduction section (Equation 5.1). The main changes in this problem 

between different tasks include: 1) the performance measure(s) that are used to be 

minimized and 2) the number and types of the constraints that are added to or removed 
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from the problem. The work of collecting the training cases and training the network was 

done on a Windows 7 computer with an Intel ® Core™ 2 processor and 8 GB of RAM. 

5.2.1 Posture prediction for touching a point 

without external load 

This task is defined as touching a point in front of the body with the right hand 

with some conditions. These conditions include the use of joint displacement PM as cost 

function in an optimization problem (Equation 5.1), and freezing the hip and lower body 

in posture prediction, which is chosen to simplify the problem. Thus, the upper part of the 

body is the only part that changes when predicting any posture. Target points were 

selected in order to test the feasibility of using ANN for posture prediction, rather than 

testing the accuracy of posture prediction itself. Thus, targets in front of the avatar were 

used, because in general, they are easier to reach and yield more realistic postures. In this 

way, we isolated the application of ANN as the point of study. The joint displacement is 

chosen to be minimized in Equation 5.1, because it is a fundamental objective function 

that is used generally in the literature for the task of reaching targets on the front side of 

the body (Yang et al., 2004).  

The network used 31 training cases, which were randomly collected to cover all 

reachable points in front of the body, as shown in Figure 5.1. The furthest points from 

Santos’s body represent the maximum distance that his hand could reach without moving 

his hip. The training points are shown in small red balls in the figure. There are 9 input 

parameters for this task, including: 1) point or target position in three-dimensional space 

(X, Y, and Z) and 2) ROMs for three DOFs. Those ROMs were shoulder flexion-

extension, shoulder abduction-adduction, and elbow flexion-extension. Those DOFs were 

included because they are the most significant DOFs for reaching the most target points. 
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Figure 5.1: Santos with the points that are used in the training cases, shown in red. 

Table 5.1 includes all input parameters for the network with their values that were 

used to train the network. Lower and upper terms in the table indicate the lower and 

upper ROM limits for each DOF. R.Shoulder1 and R.Shoulder2 represent shoulder 

flexion-extension and shoulder abduction-adduction, respectively. Value 1 in the ROMs 

represents the default ROM’s values for a typical person, while Value 2 in the ROMs is 

chosen to be smaller than Value 1 to reduce the upper and lower ROM for each DOF. 

The input combinations for all training cases in this task are shown in Table B.3 

(Appendix B). Value 1 and Value 2 have different meanings between target position and 

ROMs. For target position (X, Y, and Z), Value 1 represents the minimum value of the 

three-dimensional target position that was used in creating the training cases, and Value 2 

represents the maximum value of the three-dimensional target position that was used in 

creating the training cases. So, the value of the target position (X, Y, and Z) in the 

produced training cases is between the range of the two presented minimum and 

maximum values (Value 1 and Value 2). Regarding the ROMs, some training cases were 

produced using Value 1 of ROMs and others with Value 2. There was no training case 

created using mixed values between Value 1 and Value 2 for any ROM. So, all ROMs 

values in each training case were either Value 1 or Value 2. 
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Table 5.1: The network’s training values for the input 
parameters in the task of touching a point without 
external force. 

Input parameter Value 1 Value 2 

Target position (cm):            X -102 77 

                               Y -56 120 

                                             Z -98 3 

R. Shoulder1- lower (degrees) -23 -5 

R. Shoulder1- upper (degrees) 123.5 60 

R. Shoulder2- lower (degrees) -19 -5 

R. Shoulder2- upper (degrees) 111 50 

R. Elbow- lower (degrees) -148.5 -80 

R. Elbow- upper (degrees) -12.5 -40 

 

Outputs of this task include upper-body joint angles, which are 41 DOFs, because 

the lower-body DOFs were frozen in the task definition. Thus, the DOFs for the lower 

body are not changed at any produced posture. The GW in the created network is 

determined using the method described in Chapter 3 and equals 0.25. The resulting GW 

value is relatively large for a task requiring highly accurate prediction ability from the 

network, touching a point exactly in the space. However, this value is reasonable for this 

task, because there were only 31 points collected for training from the whole reachable 

zone in the front of the body. Thus, there are many gaps (empty spaces) between the 

training cases. Consequently, the GW must be large enough to successfully predict the 

points that are located in these gaps. However, a large GW can decrease the accuracy of 

predicting on- and off-grid points in general. 

In summary, the constructed network for this task has 9 inputs and 41 outputs and 

31 training cases. The GW value that provides the best network performance equals 0.25. 

The summary of this task and constructed network properties are shown in Table 5.2. 
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Table 5.2: The touching point without external force task definition and constructed 
network properties. 

Task 

Definition 

‐ Touching point in front of the body without external force on hand 
‐ Task variables:  

 Target point position (x, y, z) 
 Joint ROMs (upper and lower limits) 

 R. Shoulder 1: Lower (-23, -5); Upper (123.5, 60) 
 R. Shoulder  2: Lower (-19, -5); Upper (111, 50) 
 R. Elbow 1: Lower (-148.5, -80); Upper (-12.5, -40)

Network 

properties 

‐ Inputs: 9 (Target position (x, y, z) & ROMs) 
‐ Outputs: 41 (Upper body joints) 
‐ Training cases: 31 case 
‐ Gaussian width= 0.25 

 

5.2.2 Posture prediction for touching point 

with external load 

The task of touching a point on the front side of the body with external force 

differs from the task that was defined above. This task has some other conditions that are 

applied on the task definitions and more outputs. There is an external load of 100 N 

applied on Santos’s right hand, which is the hand reaching toward the target point. Two 

performance measures are used to optimize Santos’s posture prediction problem in 

Equation 5.1: joint displacement and maximum joint torques in weights of 25% and 75%, 

respectively (Marler et al., 2011). 

Like the first task (touching a point without external force), the input parameters 

for this task include: 1) point or target position in three-dimensional space (X, Y, and Z) 

and 2) ROMs for three DOFs. The input values in the training cases, however, were 

different from those in the first task. Other conditions on this task are: 1) using two 

performance measures (joint displacement and maximum torques), 2) active balance 

constraint (zero moment point), and 3) frozen hip and lower body. The zero moment 

point condition is responsible for providing only postures with balance; any imbalanced 

postures are infeasible solutions (Marler et al., 2011). Training cases were collected that 

they cover all reachable points on the front side of the body, which was similar to the 
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space shown in Figure 5.1. There were 34 training cases, where Table 5.3 shows the input 

parameters and their training values for this task. The input combinations for all training 

cases in this task are shown in Table B.4 (Appendix B). 

Table 5.3: The network’s training values for the input 
parameters in the task of touching a point with external 
force. 

Input parameter Value 1 Value 2 

Target position (cm):            X -76 59 

                              Y -47 107 

                                             Z -82 -13 

R. Shoulder1- lower (degrees) -23 -5 

R. Shoulder1- upper (degrees) 123.5 50 

R. Shoulder2- lower (degrees) -19 0 

R. Shoulder2- upper (degrees) 111 50 

R. Elbow- lower (degrees) -148.5 -70 

R. Elbow- upper (degrees) -12.5 -30 

 

As mentioned, the values for the input parameters are different from those in the 

first task to have more variation in the training process in terms of changing joint ROMs 

as well as target point locations. On the other hand, the Value 1 in all ROMs are the same 

for both tasks because those are the default ROM values for a typical person. Value 2 in 

the ROMs is chosen to be smaller than Value 1 to reduce the upper and lower ROM for 

each DOF more than that in the first task. 

The task outputs include upper-body joint angles, which are 41 DOFs, and 47 

represent all body joint torques excluding the eyes’ DOFs. As described above, the joint 

angle outputs include the upper portion of the body, since the lower part and the hip were 
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fixed when the task was specified. As indicated, this task has more outputs than the first 

task with a different range of values, which adds extra competition for the network 

prediction accuracy. So, the task has 88 outputs in total: 1) 41 upper-body DOFs (same 

previous task outputs) and 2) 47 body joint torques. It was not surprising to predict all 

body joint torques in this task because all joint torques were affected and changed by 

having external forces at any posture even if those joints are not moving when posture is 

predicted. For example, when somebody carries a load on his hand, the ankle joint angle 

does not change, but the torque changes.   

Thirty-four training cases were used to train the network in this task. It had best 

network prediction when GW equaled 0.3, which was, again, found automatically during 

the training process. The GW value was found to be close to that in the first task, which 

was touching a point without an external load. Both tasks have slightly different GW 

values because of having a different number of training cases and outputs. Using more 

training cases produces fewer gaps in the training grid. Predicting more outputs, however, 

decreases the accuracy of the predicted outputs, especially when there are two different 

types of output. The summary of this task and constructed network properties are shown 

in Table 5.4. 

Table 5.4: Touching a point without external force task definition and constructed 
network properties. 

Task 

Definition 

‐ Touching point in front of the body with external force on hand 
‐ Task variables:  

 Target point position (x, y, z) 
 Joint ROMs (upper and lower limits) 

 R. Shoulder 1: Lower (-23, -5); Upper (123.5, 50) 
 R. Shoulder  2: Lower (-19, 0); Upper (111, 50) 
 R. Elbow 1: Lower (-148.5, -70); Upper (-12.5, -30)

Network 

properties 

‐ Inputs: 9 (Target position (x, y, z) & ROMs) 
‐ Outputs: 88 (Upper body joints) 

 Upper body joints= 41 
 All body joint torques= 47 

‐ Training cases= 34 
‐ Gaussian width= 0.3 
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5.3. Results 

This section illustrates and discusses the postures that resulted from the GRNN 

prediction. In addition, these results are compared with the results from posture 

prediction. Each application will be presented separately and evaluated statistically and 

visually. In the first application, touching a point without external force, there are three 

testing cases for each on- and off-grid point. The second application, touching a point 

with external load, has two testing cases for each on- and off-grid case, because we found 

from applications in Chapter 4 that the general trend in the network prediction ability for 

all on- and off-grid cases is similar. Thus, it is enough to present only two cases for each 

on- and off-grid case to measure the degree of success in the task prediction in general. 

5.3.1 Posture prediction for touching point 

without external load 

After the training process was completed, a GRNN could be created for this 

specific task to predict any new input values within the grid space (inside the training 

space). The network prediction ability was tested for both on-grid and off-grid points 

(each point represents a combination of input parameters that were described in Section 

5.2.1). In this section, three on-grid points as well as off-grid points are tested, and the 

network outputs are compared with those from Santos posture prediction (the actual 

outputs that were used in the training process). 

Each on- and off-grid testing case is presented in separate tables. Table 5.5 

includes the input parameters for the three on-grid testing points. These cases are chosen 

randomly, because the accuracy of predicting some on-grid points is similar for all on-

grid points. As shown in the table, all input values are the same values that were used to 

train the network. Those cases should be predicted accurately by the network. All input 

parameters were already described above. 
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Table 5.5: Input parameter values for the three on-grid testing 
cases in the task of touching a point without external force. 

Input parameter Case 1 Case 2 Case 3 

Target position (cm):            X -1 77 -102 

                                             Y 56 74 49 

                              Z -37 -21 -22 

R. Shoulder1- lower (degrees) -19 -19 -19 

R. Shoulder1- upper (degrees) 111 111 111 

R. Shoulder2- lower (degrees) -5 -23 -5 

R. Shoulder2- upper (degrees) 60 123.5 60 

R. Elbow- lower (degrees) -148.5 -80 -148.5 

R. Elbow- upper (degrees) -12.5 -40 -12.5 

 

Regarding off-grid testing cases, the network should be able to predict them 

because they belong to the same range of values that it was trained on. Those off-grid 

points are selected randomly and are shown in Table 5.6. Most of the input values for 

those cases are not the same values that were used in the training. These cases, however, 

are still within the range of values that were used in the training (inside the training grid). 

The results for all on- and off-grid testing cases are presented in the following 

sub-sections, which are divided based on the type of results (visual or statistical) 

compared. 
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Table 5.6: Input parameters for the three off-grid testing 
cases in the task of touching a point without external force. 

Input parameter Case 1 Case 2 Case 3 

Target position (cm):           X -8 -62 42 

                                            Y 75 24 76 

                             Z -79 -69 -44 

R. Shoulder1- lower (degrees) -19 -6 -10 

R. Shoulder1- upper (degrees) 111 100 80 

R. Shoulder2- lower (degrees) -23 -21 -18 

R. Shoulder2- upper (degrees) 123.3 86 110 

R. Elbow- lower (degrees) -148 -119 -60 

R. Elbow- upper (degrees) -13 -28 -20 

 

5.3.1.1 Visual results 

Visual comparisons for the three on-grid postures between posture prediction 

(exact posture) and predicted GRNN results are shown in Figure 5.2. In the figure, the red 

arrows refer to the target point locations. As mentioned, the GRNN results are expected 

to be accurate for these on-grid cases because they are some of the cases that the network 

was trained to predict. These chosen on-grid cases are evaluated to make sure that the 

network was designed well to have good prediction for all cases. As discussed in Chapter 

3, the network should be tested for on-grid cases to make sure that the network was not 

trained to only predict the cases used to construct the network. 
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Figure 5.2: Three on-grid postures during the task of touching a point without external 
force for Santos posture prediction (PP) and GRNN (NN). 

The visual results in Figure 5.2 show that the GRNN output postures failed to 

touch the target points exactly. The target point in each case is represented as a red ball, 

which is located by a red arrow. Note that there are some small errors in GRNN 

prediction for the joint angles, which lead the hand away from the required exact point 

location. The error was because the network is a general regression type, which 

interpolates between training cases, and it was not trained to predict the input target point 

with 100% accuracy. The network was trained to predict joint angles where even minimal 

errors in the predicted joint angles can manifest themselves as significant errors in the 

space (x, y, and z space). In all cases, Santos’s hand moves toward the proper direction 

and close to the target point but with a small error. 

This resultant error in touching the exact point was not an issue in the motion 

tasks presented in Chapter 4 because the tasks are totally different. In the touching point 

task, the target point position is an input for the network. The collected training cases 
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cover limited points in the grid space, where the other points are still predicted but with 

some error. The outputs in this task represent the joint angles to reach the input point, and 

predicting these values with minimal errors produces significant error in touching the 

exact point. On the other hand, the motion task inputs were not values that change the 

behavior of the predicted outputs totally, like target position. Regarding the motion task 

outputs, the predicted motion profiles have the same trend, where they change slightly 

depending on the inputs. Therefore, the created grid space in the motion task has fewer 

empty spaces than in the posture task. The predicted outputs in the motion task also have 

less variation in the general behavior of the predicted task outputs. Hence, the resulting 

errors in the presented on-grid results indicate that there are two potential options to 

overcome the problem of the accuracy in touching the point. These options are presented 

in the following: 

1. Adding constraints to the network construction to force tuning the predicted 

postures from the network to be exactly on the proper position. 

2. Collecting more training cases to cover more points in the reachable zones. 

Collecting more training cases improves the accuracy of the outputs. Although the 

obtained errors in this section were for the on-grid cases, constructing the network 

using more training cases will increase the network prediction ability. 

Now, off-grid testing cases are shown in Figure 5.3, where red arrows refer to the 

target point locations. The figure visually compares three cases in which Santos was able 

to reach them without getting into any strange postures and with almost the same 

accuracy that was achieved for the on-grid cases. Even though the error of touching the 

target point is clearer in these cases than in on-grid cases, the network was still able to 

predict all 41 DOFs properly. The results show that the predicted joint angles, including 

the head and neck, were all tuned with the body corresponding to the target point 

position. The error in predicting the joint angles was minor, but still has a clear effect on 

touching the target point. 
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Figure 5.3: Three off-grid postures in the task of touching a point without external force 
for Santos posture prediction (PP) and GRNN (NN). 

Like on-grid results, the accuracy issues exist in off-grid cases. The network 

ability to predict off-grid cases is similar to the on-grid cases for this task. Hence, the 

proposed options above to solve the accuracy problem could solve the accuracy of off-

grid points too. Generally, incorporating the GRNN in posture prediction could enhance 

the prediction ability to eventually have fast, realistic, and task-based prediction of any 

point in the human reachable space. 

5.3.1.2 Joint angles 

This section presents the accuracy of predicted joint angles from the GRNN. 

Adjusted R-squares are plotted for the three on-grid cases in Figure 5.4. These plots are 

for joint angles resulting from the network and actual Santos PP outputs. It can be seen 

that the accuracy of the predicted joint angles is above 0.99 for all cases. Case 3 has a 

complete match between the exact and predicted postures (posture prediction and 
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predicted posture from the network). This accuracy was also shown in the visual results, 

where Santos was able to touch the point exactly. As discussed, it is expected to have a 

complete match when predicting some of the on-grid cases. These plots indicated that the 

network was able to interpolate all body joint angles properly to get acceptable accuracy; 

however, very small changes in some outputs still might lead to posture with the hand 

away from the exact target point. On the other hand, these results were statistically 

promising, since the network was able to predict all joint angles quickly and accurately. 

 

Figure 5.4: R-square values for GRNN vs. Santos posture prediction for 41 DOFs of three 
on-grid testing cases. 

Similar to the on-grid cases, Figure 5.5 shows adjusted R-square values for the 

three off-grid testing cases. Even though those cases were not trained on the network, the 

results showed high matching between predicted values and the actual ones. The R-

square values for all cases were above 0.97, which were highly accepted numbers in 

statistics. Hence, it was found that there is a similarity between off-grid target point 

predictions and on-grid ones. In conclusion, the network handled the task properly by 

providing postures close to the exact ones. 
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Figure 5.5: Adjusted R-square values for GRNN and Santos posture prediction for 41 
DOFs for three off-grid testing cases. 

Studying PP for touching a point using ANN showed that there is potential for the 

use of ANN to quickly predict realistic postures. This prediction could be used widely 

and in a task-based manner because, after training was completed, the GRNN was able to 

smoothly predict even off-grid points. In addition, it used a relatively small number of 

training cases, which could come from any other source, such as motion capture systems, 

since requiring a large number of training cases is not a problem for the GRNN type of 

ANNs. However, obtaining R-square values in posture prediction similar to those 

obtained for motion prediction in Chapter 4 suggests the potential for an issue of contact 

problem possibility for motion prediction as well as posture. 

5.3.2 Posture prediction for touching point 

with external load 

Results of posture prediction for touching a point with an external load are 

presented in this section. This task technically was an expansion of what was done in the 

first task. The GRNN was applied to include more conditions and predict more 

parameters. So, the network was trained to predict joint angles and torques. The task used 
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the same input parameters that were used for the first task (task of touching point without 

external force). The input parameter training values, however, differ from those used in 

the first task. The input values for the presented testing cases in this section are different 

from those presented in the first task too. Both on- and off-grid cases’ results are 

presented in Table 5.7. Like the first task, those cases are compared visually and 

statistically. 

Table 5.7: Input parameters for the two on- and off-grid testing cases in 
posture prediction for touching a point with an external load. 

 On-grid cases Off-grid cases 

Input parameter Case 1 Case 2 Case 1 Case 2 

Target position (cm):           X 17 -49 -7 12 

                                            Y -11 -30 40 -2 

                                            Z -34 -49 -60 -66 

R. Shoulder1- lower (degrees) -19 -19 -10 -12 

R. Shoulder1- upper (degrees) 111 111 80 90 

R. Shoulder2- lower (degrees) -23 -5 -15 -9 

R. Shoulder2- upper (degrees) 123.5 50 90 70 

R. Elbow- lower (degrees) -148.5 -148.5 -100 -80 

R. Elbow- upper (degrees) -12.5 -12.5 -20 -30 

 

This section has three subsections that separately discuss visual and statistical 

results for on- and off-grid testing cases. The differences between the results of this task 

and the previous one include: 1) this task has two testing cases for each of the on- and 

off-grid testing cases, and 2) the outputs of this task include joint torques in addition to 

joint angles. 
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5.3.2.1 Visual results 

These results are obtained by running the posture prediction in Santos, under the 

exact mentioned conditions, for the exact results and the GRNN for predicted results. The 

joint angle values are performed at Santos’s body and compared subjectively for both on- 

and off-grid cases. Figures 5.6 and 5.7 show the visual results for all testing points. The 

green arrow on Santos’s hand shows the 100 N load that is applied on his hand in this 

task, while the red ones refer to the target points locations. Figure 5.6 compares the visual 

results of the two on-grid testing cases between the posture prediction and predicted 

posture from the network. 

       

Figure 5.6: Two on-grid postures for the task of touching a point with external force for 
Santos posture prediction (PP) and GRNN (NN). 

The above figure shows that the GRNN had accepted prediction for those on-grid 

points, training points; they were even better than those in the previous section. That 

might be a result of having more training cases for this network and/or the randomly 

selected target point positions that were used in the comparisons at both tasks. By chance, 

this task has more training cases than the first one, because the cases were collected 

randomly to cover all reachable zones. After collecting all training cases, there were more 

obtained cases for this task. It looks like Case 1 had more error in touching the target 

point than Case 2, which was very accurate. In both cases, the network had very good 
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results in terms of fast prediction; accuracy could be improved by having more training 

cases.  

Figure 5.7 shows the visual results for the two off-grid testing points in which the 

network had the same trend in predicting previous points. In the figure, the red arrows 

refer to the target point. Santos had relatively large error in touching the target point in 

Case 1, while Case 2 was accurate. Generally, the off-grid testing cases had similar 

accuracy and prediction behaviors to the on-grid testing ones. Obtaining the same level of 

accuracy for on- and off-grid testing cases means that the heuristic method of 

determining GW in Chapter 3 works well for different tasks. Thus, the network predicted 

results for any point is comparable between both on- and off-grid points. Improving the 

accuracy of this task could be achieved by applying one of the potential options that were 

presented to solve the task of touching a point without external force. 

       

Figure 5.7: Two off-grid postures in the task of touching a point with external force for 
Santos posture prediction (PP) and GRNN (NN). 

Generally speaking, it was found from these results that system prediction 

depends on: 1) the input combination (i.e., how close the point is to the training cases), 2) 

the number of training cases, and 3) the network properties, which are automatically 

selected in this study to have maximum accuracy for such a task. 
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5.3.2.2 Joint angles  

In this and the following part of the results discussion, the two types of outputs 

(joint angles and torques) are presented and compared statistically by measuring adjusted 

R-square for all testing cases. The joint angle results are presented first in this subsection 

followed by joint torque results. The adjusted R-square plots are presented for the two 

on-grid testing cases in Figure 5.8. Case 2 had R-square equal to 1, while it was around 

0.94 for Case 1. It is expected to have some on-grid points with 100% accuracy like Case 

2 in the previous figure. These values match the visual results, which showed more 

accurate results for Case 2 than for Case 1.  

These results were obtained because Case 2 was closer to the training cases than 

Case 1, which produces more accurate predicted results for Case 2. Generally speaking, 

the accuracy of predicting such a point increases if the point becomes closer to more 

training points. In other words, the accuracy of predicting one on-grid case could be 

lower than that of one off-grid case, because the on-grid point is further from the other 

on-grid cases than the off-grid case (i.e., the on-grid case is an extreme grid point). 

 

Figure 5.8: Adjusted R-square values between GRNN and Santos PP for 41 DOFs of two 
on-grid testing cases. 

The second results to compare are the off-grid testing cases. Figure 5.9 shows the 

adjusted R-square values for both off-grid cases. The R-square values were 0.86 and 0.97 



111 
 

 

for Case 1 and Case 2, respectively. These results were shown visually in Figure 5.7 

where Santos’s hand was farther from the point in Case 1 than in Case 2. 

 

Figure 5.9: Adjusted R-square values between GRNN and Santos posture prediction for 
41 DOFs of two off-grid testing cases. 

In the visual results of Case 2 in Figure 5.7, Santos touches the target point 

exactly. That accurate result was obtained with R-square around 0.97, which indicates 

that visual results could be accurate even with R-square less than 1. That was shown in 

motion prediction applications when R-square values were less than 1, and were visually 

accurate. On the other hand, the first task had a test case with R-square values above 

0.97, but also had more prediction error than this case, Case 2. 

It is concluded that there was some visual accuracy indication in finding the R-

square values, but not for all cases. Some off-grid points also have better results than on-

grid points, even though the network was trained to predict those on-grid points. In 

general, higher R-square value is directly related to producing better visual results. 

5.3.2.3 Joint torques 

The third set of results in this section represents the second type of outputs, which 

are the joint torque values. The reason for including torques in the outputs was to 

examine the accuracy of the network prediction when having two different types of 

outputs. In this task, the outputs are joint angles and torques. The joint torque results with 

their adjusted R-square values for on-grid tasting cases are shown in Figure 5.10. Case 2 
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has R-square value equals to 1, which was the same value for the joint angle results of the 

same case, shown in Figure 5.8. The joint torque results of the on-grid cases had accuracy 

similar to that achieved in the joint angle results. 

 

Figure 5.10: Adjusted R-square values for all on-grid testing cases. In each case, the R-
square is plotted for all 47 DOF torques. 

In Figure 5.11, joint torque plots with adjusted R-square values are shown for the 

two off-grid testing cases. Case 1 shows the lowest R-square value (0.97), which was the 

case with the lowest R-square value in joint angle prediction among all testing points. 

Case 2 has a highly accurate value of 0.99, where the visual results for this case was 

accurate too. 

 

Figure 5.11: Adjusted R-square values for the two off-grid testing cases. In each case, the 
R-square is plotted for all 47 DOF torques. 



113 
 

 

Generally, the joint torque results were very accurate. The R-square values were 

above 0.98 for both on-grid cases, while they were above 0.97 in off-grid cases. For each 

of these on- and off-grid testing cases, the torque result (R-square value) is similar to that 

obtained in the joint angles result for that case. It is concluded that the network was able 

to handle and predict both types of outputs successfully. Both outputs were predicted 

with the same level of accuracy for each fed case. 

This section indicated that one GRNN could be able to handle two types of 

outputs with the same success rate. Both visual and statistical comparisons were helpful 

in providing results indicating the accuracy of the GRNN in predicting human postures. 

Moreover, the results provide a slight indication of some relationship between angle and 

torque values at the same joint. This is because the joint torque changes when changing 

the joint angle. The significant indication for extracting this relationship from the 

predicted GRNN results is that the network could not only predict these outputs 

separately, but it also finds some relationships between them. Thus, the ability of finding 

this relationship might be the key to further analysis on the network properties (layers and 

neurons) to obtain clear information on the general human performance when performing 

a posture task, or to further study the use of other input parameters that might have more 

effect on the predicted outputs. 

5.4. Discussion 

Another application for ANN in DHM, specifically the GRNN type, was 

described in this chapter. This application is posture prediction, which has already been 

studied in the literature using many approaches, including some ANN types. On the other 

hand, the GRNN type of ANN has never been used for this purpose. GRNN has ability 

superior to that of other types of ANN in predicting a large number of outputs accurately. 

Thus, GRNN was used in this chapter to predict postures for two tasks. The tasks are 

touching a point on the front side of the body with and without external force applied on 

the hand. Since there is infinite number of points in front of the body, the GRNN was 
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able to use a relatively small number of training cases to produce generally accurate, fast, 

and promising postures for both tasks. 

This study showed that the network’s GW, which was determined automatically 

using the new approach, was varied depending on the applications and was successful. 

The GW values in both tasks were similar, 0.25 and 0.3 for the first and second tasks, 

respectively. This similarity in the obtained GW values concludes that having two 

different types of outputs for a task (like the task of touching a point with external force) 

does not sharply change the GW value from that obtained for a task with only one type of 

output (like the task of touching a point without external force). In this chapter, both 

performed tasks have the same inputs, but a very different number of outputs. Therefore, 

predicting two different types of outputs is not the main reason for reducing the accuracy 

of the network prediction capability. The task of touching a point without external force 

has only one type of output, but has relatively the same accuracy that resulted from the 

task of touching point with external force.  

The contact problem (touching exact point or location) in this chapter was serious. 

Santos failed in exactly touching the target point for most of the tested cases, even the on-

grid cases. This problem did not occur in the jumping up on a box task in Chapter 4, 

because the task had a smaller number of inputs and fewer gaps between training cases. 

Consequently, the GW value was very small, equal to 0.05, which produced accurate 

results from the network. Generally, to solve the contact problem in posture prediction 

tasks, there are two options: 

1. Collecting many training cases to decrease the gaps in the training grid. Then, the 

new methodology for determining best GW will be able to set small GW and 

predict the task more accurately. 

2. Adding constraints to the network construction to force the predicted postures 

from the network to be exactly in the proper position. 
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It is evident from this chapter that using an adjusted R-square value is relatively 

helpful for comparing results but that visual error could exist with a very high accuracy 

percentage. On the other hand, the results could have a relatively low R-square value with 

good visual results depending on the significance of the joints that have errors in their 

prediction. Some joints with minimal errors produce significant visual error in touching 

the exact point, while others do not produce that error (like joints that are responsible for 

the rotation). 

Although many types of ANNs were used in studying posture prediction, studying 

two different tasks’ posture predictions using the same ANN type resulted in some 

interesting conclusions about how to generalize posture prediction problems. This 

prediction could be done realistically and in a task-based manner once we know the 

general trend for the human when performing posture prediction, which is done by 

studying more and various posture tasks. Hence, the network could be used as an initial 

point for an optimization problem for the quickest and best posture prediction for a 

specific task. In addition, the network used a relatively small number of training cases, 

which could come from other sources such as motion capture systems. Eventually, 

generalizing posture prediction capabilities would facilitate a thorough understanding of 

human performance.  

Generally speaking, it was found from the applications in this thesis that system 

prediction depends on: 1) the input combination (i.e., how close to the point the training 

case is), 2) the number of training cases, and 3) the network properties, which are 

automatically selected in this study to have the maximum accuracy for such a task. 

Moreover, the type of inputs and outputs that form a task could be studied to improve the 

performance of the network used. For example, training the network to predict joint 

center locations instead of joint angles has a prospective success in producing more 

accurate results in posture prediction tasks. 
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Along with the promising use of GRNN in posture prediction, there are some 

challenges and limitations in its current use that need to be addressed in future work. 

First, the accuracy of touching the target point was a problem when using GRNN even 

when predicting on-grid points. Second, the proper number of training cases to be chosen 

for such a task needs to be addressed. Two different numbers of training cases in which 

the corresponding accuracies were different were used for this application. Hence, this 

number should be optimized depending on: 1) the needed accuracy, 2) the task type, and 

3) the number of inputs and outputs. On the other hand, using the GRNN in this chapter 

achieved the goal of studying initial work quickly, directing Santos to his proper posture. 
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CHAPTER VI 

DECISION ENGINE FOR HUMAN PERFORMANCE MEASURES 

6.1. Introduction 

The successful use of artificial neural networks (ANN) in different digital human 

modeling (DHM) problems encourages examining the prediction of human performance 

measures (PMs) using a general regression neural network (GRNN) in this research. The 

PMs are functions that are minimized together in a posture prediction problem, as shown 

in the optimization formula in Equation 6.1. The difference between this application and 

the applications presented in Chapters 4 and 5 is that the literature has never predicted 

PM weights using ANN or any other method. 

            Find:                Joint angles    (6.1) 

To minimize: 

ሻݍሺ	ܨ ൌ 	ଵݓ ஽݂௜௦௖௢௠௙௢௥௧ ൅ 	ଶݓ ௃݂௢௜௡௧	஽௜௦௣௟௔௖௘௠௘௡௧ ൅	ݓଷ	 ெ݂௔௫.௃௢௜௡௧ି௧௢௥௤௨௘ ൅	ݓସ	்݂ ௢௧௔௟	௃௢௜௡௧ି௧௢௥௤௨௘ 

Subject to:               Distance between finger-tip (end effector) and target point = 

very small value. 

Human PMs are considered the core of human performance drivers, which direct 

the internal decisions and behaviors of humans while they are performing various tasks. 

Humans make decisions about which PM to use and minimize, and behaviors are the 

results of using specific PMs. If a specific method could realistically predict these PMs, it 

would be a significant addition to DHM applications, allowing imitation of the human 

brain. However, the main challenge in studying human PMs is that there is no direct 

method for directly predicting PMs in any DHM application. 

In human posture prediction, PMs directly influence posture results because the 

human tends to minimize one or more PMs when performing a task, producing different 

results. This study uses four joint-based PMs (discomfort, joint displacement, maximum 

joint torque, and total joint torques), and this chapter presents a new strategy for 
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predicting the weights [ݓଵ,ݓଶ, ,ଷݓ  ସ] of these four PMs using GRNN (see the costݓ

function in Equation 6.1). 

This chapter also examines the applicability of two approaches for directly and 

indirectly collecting training cases (i.e., weight values) for the applied network. The first 

training approach depends on direct extraction of the PM weight values manually from 

predicted postures. The PM weights in the training cases are chosen subjectively based on 

posture prediction experiments in which the weights are changed until the posture is 

visually accepted for the intended task. The second training approach uses motion-

captured postures for indirect extraction of the PM weights. This method is more 

innovative and reliable for predicting PMs because it depends on extracting the PM 

weights indirectly from motion capture (Mo-cap) postures. The method basically extracts 

the PM weights by solving optimization problem for provided Mo-cap posture. The both 

proposed approaches for collecting the training cases will be described in details in the 

following sections. In summary, the following contributions are provided in this chapter: 

1. Developing a decision engine for determining and selecting human PM weights 

using subjectively selected postures as training cases. 

2. Proposing a mathematical formulation for indirectly extracting human PM 

weights from motion-captured postures. The proposed method is validated using 

one training case. A training case was extracted (i.e., the PM weights were 

extracted) from recorded Mo-cap data with an optimization algorithm. 
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6.2. Training with Predicted Postures 

Posture prediction using multi-objective optimization (Equation 6.1) in Santos is 

well developed to be used as a source for training the proposed network to predict the 

four PMs for various tasks, including those studied in Chapter 5. Training cases in this 

method are collected manually using posture prediction in Santos and using the four PMs 

together to be minimized in touching a point with and without external force on the right 

hand.  

Training cases were collected manually to have different PM combinations for 

touching different points in front. The collected training cases were subjectively accepted 

based on the visual acceptance of the produced posture. Same cases were collected with 

the same inputs except with the existence of a 100 N external force on the right hand for 

the second task. Table 6.1 shows the input and output ranges and values for the training 

cases. The number of input parameters and outputs were the same for both tasks. In the 

table, there are nine inputs, including three for the target position (X, Y, and Z) and six 

for the upper and lower limits of the right shoulder flexion-extension (R. Shoulder1), 

shoulder adduction-abduction (R. Shoulder2), and elbow flexion-extension (R. Elbow). 

The table is arranged so that the maximum and minimum columns represent the 

maximum and minimum training values used in the training cases for the corresponding 

row (parameter). Input parameters with Value 1 and Value 2 have only two fixed values 

in the training cases. So, the parameter has either one of those two values in the collected 

training cases. For example, target position is expressed in three-dimensional values (X, 

Y, and Z), where each training case has a value within the range between the minimum 

and maximum values in the three dimensions. Joint ranges of motion (ROMs), however, 

have two fixed values that are used in the training cases. Each training case uses only 

value 1 or value 2 for all input ROMs. 
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Table 6.1: The training values for the input and output parameters for the 
proposed decision engine. Both tasks are included and have the same 
training inputs but different outputs. 

 Parameter name Value 1 Value 2 Minimum Maximum 

Inputs Target Position: X --- --- -97 52 

               Y --- --- -50 103 

                            Z --- --- -102 1 

R. Shoulder1-L -23 -5 --- --- 

R. Shoulder1-U 123.5 60 --- --- 

R. Shoulder2-L -19 -5 --- --- 

R. Shoulder2-U 111 50 --- --- 

R. Elbow-L -148.5 -80 --- --- 

R. Elbow-U -12.5 -40 -- --- 

Outputs 

(No Force) 

Discomfort --- --- 0.05 0.4 

J. Displacement --- --- 0.8 0.15 

Max. J. Torque --- --- 0.05 0.5 

Total. J. Torques --- --- 0 0.25 

Outputs 

(with Force) 

Discomfort --- --- 0.1 0.4 

J. Displacement --- --- 0.2 0.6 

Max. J. Torque --- --- 0.1 0.4 

Total J. Torques --- --- 0.05 0.3 

 

The input training values also were exactly the same for both tasks (tasks of 

touching point with and without external load), while the output PM weights at the 

training cases were different because of the force existence. The outputs included four 

parameters representing the four PMs that were used in in this study, and they differ 

according to task (i.e., they have different colors in the table). These PMs are: discomfort, 
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joint displacement, maximum joint torque, and total joint torque. The input combinations 

for all training cases in both tasks are shown in Tables B.5 and B.6 (Appendix B). 

For each collected training case, the four PM weights were changed until Santos 

touches the point properly and his posture looks realistic. The sum of the PM weights in 

each training case equals 1. Since humans behave differently, the collected training 

postures and the PM weights were considered accepted based on what we found accepted 

for the given points and the specified tasks. After collecting the training cases, the 

network was constructed and trained using those cases. There were 21 training cases; 

each had nine inputs and four outputs. Constructing the network in this application was 

slightly different from the previous applications. The new strategy of determining 

Gaussian width (GW) was not applied in this application for the following reasons: 

1. Initially, some off- grid cases were collected to determine the best GW for this 

application. However, the best GW value was 2, which was very large, and the 

best R-square was very low, around 0.2, using this GW value. This GW value 

provided high error in the general prediction because it was large. That GW value 

was obtained because the network was not able to produce any value for the 

testing cases without having a large GW value to produce outputs from many 

neurons at the same time. In general, if the inputs are normalized, it is impossible 

for the GW to equal 2 for any task. 

2. The application in this chapter is different from the ones in Chapters 4 and 5. 

Here, the network predicts the general trend in selecting the combination of the 

PM weights in the training grid. Hence, generalization of the prediction of output 

weights is needed more than prediction of the exact outputs for testing or training 

cases (i.e., there is no need to have a very low GW value for exact prediction). 

Therefore, it is better to have a reasonable GW value that provides an accepted 

weight combination for each zone or area in the training grid. Producing the PM weights 

from the network with some error will not change the general trend in the predicted 
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postures, because the PMs are summed together in the optimization problem (Equation 

6.1). Using a very small GW value produced accepted predictions for the on-grid training 

point only, and failed in general prediction of accepted weight values for each region on 

the grid. On the other hand, a large GW value produces similar outputs for any point at 

any region in the space, and fails to produce accepted outputs at different grid zones (i.e., 

the network produces the same outputs for different inputs). Thus, the GW was chosen 

around the middle of the normalized input value and equal to 0.4. The best GW value was 

found to be around the middle of the input values in previous literature (as shown in 

Chapter 3). In addition, all previous applications in this thesis had GW values of less than 

0.5, which indicated that the GW should not even reach the middle of the maximum input 

normalized value. So, both tasks, touching a point with and without external load, use a 

GW equal to 0.4 and 21 training cases. 

6.2.1 Results 

This section presents the results from the trained network to predict the PM 

weights. Expressing the results of this application is slightly different from expressing 

those from previous applications in this thesis, because training cases were collected on 

subjective bases. Hence, test cases results are evaluated based on the visual appearance of 

the postures that are produced by using the four predicted PM weights. Both tasks are 

evaluated in this section for on- and off-grid test cases, each with three test cases. 

6.2.1.1 Off-grid results 

For both tasks, we evaluate their networks using the same testing cases, because 

they used the same training input values. Table 6.2 shows the input parameter values of 

three off-grid test cases. These same cases are used to test the predicted results from both 

tasks’ networks. In these cases, the target points had positions between the maximum and 

minimum training values, while the ROMs had values between the two values that were 
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used in training. The predicted outputs from GRNN, which are the PM weights, should 

be subjectively realistic. 

Table 6.2: Input parameter values for three off-grid 
testing cases. 

Input Parameter Case 1 Case 2 Case 3 

Target Position:   X -3 40 -37 

                             Y 21 -13 94 

                              Z -52 -57 -37 

R. Shoulder1-L -10 -8 -17 

R. Shoulder1-U 110 90 70 

R. Shoulder2-L -19 -10 -15 

R. Shoulder2-U 59 80 100 

R. Elbow-L -120 -130 -90 

R. Elbow-U -20 -20 -35 

 

The predicted outputs for the three off-grid testing cases are shown in Table 6.3, 

which includes the outputs for both tasks. The sum of the weights was 1 for all training 

sets. Similarly, the sum of the predicted weights in each case in the table is around 1. In 

general, the network predicted high output fraction for joint displacement PM in all cases, 

and for both tasks. The network also predicts relatively low fraction for the total joint 

torque PM. These results match the general trend for the weight values in the training 

cases (See Tables B.5 and B.6 in Appendix B). 
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Table 6.3: Predicted output weights from GRNN for the four PMs in three off-
grid testing cases for both tasks. 

Task type Case # Discomfort Joint 

Displacement 

Max. Joint 

Torque 

Total Joint 

Torques 

No force 1 0.11 0.71 0.07 0.1 

 2 0.13 0.68 0.1 0.09 

3 0.21 0.55 0.19 0.04 

With force 1 0.12 0.53 0.21 0.15 

 2 0.14 0.48 0.24 0.13 

3 0.19 0.42 0.24 0.14 

 

The weight values in the table show that there were some differences in the 

predicted PM weights between the two tasks, with and without external force tasks. In 

general, the tasks have different predicted weight values when touching the same testing 

point. Joint displacement PM was the dominant PM in both tasks, but with a smaller 

fraction in the second task. Maximum joint torque and total joint torques were more 

important in the case of external force existence, because they had larger weight values in 

the second task. 

For the first task, comparing the resulting postures when using the predicted PM 

weights was more useful for visually examining the efficiency of using GRNN and the 

predicted numbers. The visual results were obtained by asking Santos posture prediction 

to do the tasks using the GRNN predicted weights. Figure 6.1 shows the visual postures 

for the three off-grid testing cases for the first task when using the GRNN-predicted PM 

weights. Target points in the cases are represented with small red balls. The postures 

were visually accepted and relatively realistic for Santos. He was able to reach and touch 

the point in all cases properly and without bad movement or starting posture. Generally, 
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these postures look better than those produced when using one or two PMs, because 

predicting postures using four PMs is more realistic and accepted under various input 

points and conditions like load existence. 

 

Figure 6.1: The produced postures for three off-grid test cases when using the GRNN-
predicted PM weights in the task of touching a point. 

Regarding the second task, Santos reached the same points but with external force 

on his right hand. The differences in the resulted PM weights between this task and the 

first task (the task of touching point without external load) were clear. Figure 6.2 shows 

the visual postures for the three off-grid testing cases at the second task when using the 

GRNN-predicted PM weights. The way Santos reached the same points was different 

because of the force on his hand. Santos’s postures look different from those from the 

first task because of load existence. The results were still achieved successfully and 

realistically, considering the load effect on the produced postures. The green arrow in 

each posture in the figure represents the 100 N load on the right hand. However, Case 3 

appears to be the least accepted posture among the tested postures, because it is close to 

the extreme values of the inputs in the training grid (i.e., it is the furthest testing case 

from the training points; see Table B.6 in Appendix B. 
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Figure 6.2: The produced postures for three off-grid test cases when using the GRNN-
predicted PM weights in the task of touching a point with an external load. 

Compared to the first task, Case 1 showed more bending in Santos’s hand as a 

result of applying a load as well as more flexion in the elbow. This result is close to what 

a human normally does when he lifts a load. Similarly, Cases 2 and 3 showed the same 

effects on the produced postures, where different postures were obtained from those in 

the first task. In Case 2, Santos moves his shoulder closer to the point, which might be to 

decrease the torque on it while carrying that load. Case 3 was similar to the previous 

cases where his elbow bent more than it did in the first task. Hence, the second task 

presented and enhanced the idea of having some correlations between different PMs on a 

task-based manner, because the PM weight values in the training cases differed between 

the first and second tasks as well as the predicted results in the testing cases. 

6.2.1.2 On-grid results 

On-grid testing cases were also studied in this thesis to check the differences 

between the manually selected PM weights (actual training cases) and the predicted 

weights from the GRNN. It was important to study whether the network produces more 

realistic results than training cases, because the chosen training weights were selected 
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randomly during the training, which depended on and treated each case separately. Table 

6.4 shows the three on-grid testing cases that were compared in this study. 

Table 6.4: Input parameter values for three on-grid 
testing cases. 

Input Parameter Case 1 Case 2 Case 3 

Target Position:  X -63 51 -56 

                             Y 45 35 -2 

                             Z 0 -15 -89 

R. Shoulder1-L -23 -23 -5 

R. Shoulder1-U 123.5 123.5 60 

R. Shoulder2-L -19 -19 -5 

R. Shoulder2-U 111 111 50 

R. Elbow-L -148.5 -148.5 -80 

R. Elbow-U -12.5 -12.5 -40 

 

The resulting PM weights from the GRNN and the exact training outputs were 

compared. These results are presented in Table 6.5, which also presents the results for 

both tasks. The testing cases in the table are arranged so that the results of the first task 

are presented first. For the first task, the exact results are presented first, followed by the 

predicted results from GRNN. The same arrangement is followed for the second task in 

the same table. 
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Table 6.5: Three on-grid testing cases for output PM weights at both 
tasks. The results include the exact and predicted values. 

Task type Case # Discomfort Joint 

Displacement 

Max. J. 

Torque 

Total J. 

Torques 

No force Exact:    1 0.2 0.6 0.15 0.05 

               2 0.1 0.25 0.4 0.25 

               3 0.15 0.5 0.25 0.1 

GRNN:  1 0.16 0.52 0.23 0.09 

               2 0.17 0.34 0.35 0.15 

               3 0.16 0.49 0.23 0.07 

With force Exact:    1 0.25 0.5 0.1 0.15 

               2 0.4 0.35 0.2 0.05 

               3 0.3 0.3 0.3 0.1 

GRNN:  1 0.2 0.46 0.2 0.14 

               2 0.26 0.37 0.25 0.13 

               3 0.29 0.33 0.29 0.09 

 

The GRNN provides some variations from the exact ones, which is expected 

because the GW was set in the middle to equal to 0.4. This value for GW does not 

provide exact results for on-grid prediction. However, having GW in the middle allows 

handling more variation or oscillation in the training cases, which was the case in this 

application, where the training case outputs were chosen randomly. The predicted results 

from GRNN were close to the exact values, and each predicted PM weight was confined 

within its training range. 
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As mentioned, these results in numbers did not provide much useful information 

about the degree of successfulness of the GRNN prediction. It is also important to 

remember that small changes in PM weights might lead to very different postures. Hence, 

visual results were compared by predicting postures using PM weights from the predicted 

GRNN and the exact training set. Figure 6.3 shows the visual postures for three on-grid 

testing cases in touching a point without a load on the hand. The cases are arranged so 

each case presents both predicted and exact postures. 

 

 

Figure 6.3: Three on-grid test posture cases for the actual (Exact) and predicted PM 
weights in the task of touching a point. 

Since the training sets were subjectively selected, testing results are also 

compared subjectively based on the visual appearance of each posture. For this task, all 
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results in the above figure are accepted, where the GRNN on-grid postures were very 

close to those from the exact results even though the weight values were slightly 

different. Cases 2 and 3 in the figure show matching between the exact and predicted 

postures. The GRNN provided a different posture in Case 1, which would be considered 

at some point better than the exact training case. The reason for that is that the network 

predicted better weight combination than was chosen for that case during the training. In 

other words, the curve or prediction for the training cases that the GRNN produces might 

have better generalization for the weight predictions than selecting the weights randomly. 

Generally, all postures were accepted from the GRNN predicted weights as well as the 

exact ones. These results indicate that changing the produced posture solution sensitivity 

to the change in the PM values varies depending on the intended posture and task. Small 

changes in the predicted weight values in Case 1 produce a different optimization 

solution but did not change the results in Cases 2 and 3 for the exact and predicted 

results. 

For the second task, touching a point with a load on the hand, the same three on-

grid test cases were compared visually in Figure 6.4. The cases in the figure are for 

touching the same exact point except with existence of the load, indicated by the green 

arrows. Like the results of the first task, postures from the predicted PM weights were 

also slightly different from those in the exact training cases. In this task, two cases also 

matched. Cases 1 and 3 matched, and the predicted posture in Case 2 was different. In 

that case, Santos bent his elbow in both postures but in different rotations. This case was 

again subject to personal preference as far as deciding which resulting posture was better. 

In this task, all cases were also accepted in terms of someone carrying 100 N on his hand. 
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Figure 6.4: Three on-grid test posture cases for actual (Exact) and predicted PM weights 
in the task of touching a point with external force. 

6.3. Training with Motion Capture (Mo-cap)  

Since Mo-cap is a source for providing realistic data about human movement 

when doing a task, many scholars depend on Mo-cap to study human behavior. In this 

section, a new Mo-cap-based methodology is proposed to extract human PM weights that 

control human performance. Given enough Mo-cap data, this method should replace the 

method of training the network using manually predicted postures. 

This method depends on solving an optimization problem (Equation 6.2). In this 

problem, the given data are five vectors of 55 DOFs with some other task-based input 

like target point position, load existence, sitting/standing, etc. The five given vectors 

represent one posture from Mo-cap posture and four postures from running Santos 

posture prediction, each using only one of the four PMs for the same task (i.e., touching 
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the same point with the same conditions). In the optimization problem, PM weights are 

the design variables that need to be optimized. The objective function to be minimized is 

the difference between the Mo-cap posture (ࢗ෥ெ) and the weighted sum of the four joint 

angle vectors [ܙ෥ଵ, ,෥ଶܙ ,෥ଷܙ … ,  ෥௪ሿ, which results from running posture prediction usingܙ

each of the four PMs. To normalize the weight values (i.e., make their total equal to 1) 

and limit them so that their optimized values are always positive, five constraints are 

added to the problem. The optimization problem is solved using sequential quadratic 

programming method by SNOPT software (Gill et al., 2002). After solving the 

optimization problem, the resulting posture from the four PMs combined in a weighted 

sum should be accepted, because it matches the actual Mo-cap posture. 

Given:       ࢗ෥ெ, ࡾ෩,	L, and additional task parameters          (6.2) 

Find:       	ɣ෤௪ 

To minimize:  ││ሺɣଵܙ෥ଵ ൅ ɣଶܙ෥ଶ ൅ ⋯൅ ɣ௪ܙ෥௪ሻ െ  ││෥ெܙ

            Subject to:        ∑ 	ɣ෤௜௪
௜ୀଵ ൌ 1 

                                     0 ൑ ɣଵ ൑ 1 

                         0 ൑ ɣଶ ൑ 1  

                         0 ൑ ɣଷ ൑ 1 

                                     0 ൑ ɣସ ൑ 1 

where:		ࢗ෥ெ: Mo-cap joint angles (size: 1x55). 
 .෩: target point position (x, y, and z) (size: 1x3)ࡾ  
  L: external load value (size: 1x1). 
  ሾܙ෥ଵ, ,෥ଶܙ ,෥ଷܙ … ,  .෥௪ሿ: joint angle values from different performance measuresܙ

              ɣ෤௪ ൌ ሾ	ɣଵ, ɣଶ, ɣଷ, …]: performance measure weights. 
             w=4 (number of PMs). 
 

This training method could be populated to be used over many postures at various 

tasks. Given enough Mo-cap training data for such a task, this method will be able to 

train GRNN properly to predict that task. Further proper prediction for PM weights at 

different tasks under many conditions could lead to a thorough understanding of the 
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relationships between the PMs. Extracting these relationships will be a huge step toward 

understanding how and why people think as they do when accomplishing such a task. 

6.3.1 Results 

The previously described approach depended on subjective evaluation, training 

with predicted postures, in order to determine PM weights for training. A more precise 

approach, however, was needed to provide these weights for proper training. Thus, a new 

Mo-cap-based approach was introduced in Equation 6.2 for indirect extraction of the PM 

weights. In this section, we examine the validity of the proposed approach. One Mo-cap 

posture is collected to apply the new approach. Consequently, one training case is 

extracted and evaluated. 

In the collected Mo-cap posture, all 55 DOFs are known. This Mo-cap posture, 

shown in Figure 6.5, is represented on Santos. The task was to touch a point in front with 

the right hand, similar to what was done in posture prediction applications in Chapter 5. 

 

Figure 6.5: Motion capture posture on Santos. 

Then, posture prediction was run four times on Santos to touch the same point 

using each one of the four PMs that were mentioned. Each resultant posture in Santos 
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posture prediction was obtained from minimizing only the specified PM. Figure 6.6 

shows the resultant postures from Santos posture prediction when minimizing the 

discomfort, joint displacement, maximum joint torque, and total joint torques. 

 

Figure 6.6: The four resultant postures for running Santos posture prediction with the four 
PMs. 

The figure shows that none of these four postures was exactly like that from Mo-

cap. However, the posture produced when minimizing joint displacement was the closest 

to the Mo-cap one, because this PM provides the most realistic posture for touching point 

in front side of the body. After obtaining the joint angles from these four postures, the 

optimization algorithm was run to find the optimal sum for these four postures that 

produces the exact or closest posture to the Mo-cap one (Equation 6.2). The algorithm 

finished successfully and provided the optimum weights. The weights were 0.28, 0.57, 

0.07, and 0.08, which represent discomfort, joint displacement, maximum joint torque, 

and total joint torques, respectively. Each of the four postures had weight or contribution 

in the optimal solution, which means that they are all important in producing actual and 

realistic posture. After running Santos posture prediction using these PM weights, the 
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visual result is shown in Figure 6.7. This posture was the closest posture to the Mo-cap 

one. 

 

Figure 6.7: The resulting postures for the optimal weight combination. 

The result was visually better than all other postures that were produced using 

single PM except the one that produced from joint displacement. However, the joint 

displacement PM, as mentioned, cannot provide realistic postures when the point located 

behind the body or incase if external load is applied on the hand. Predicting the posture in 

Figure 6.7 was based on trying to make it as close as possible to realistic motion-captured 

posture, and it was close to that posture. The optimal posture, however, had some small 

differences from the exact one. The feet position and left hand were the main notable 

differences. Otherwise, the predicted posture was generally accepted. In addition, since 

optimization was used to produce this posture, it was the best achievable posture when 

the four PMs were used. In addition, the optimal weight values were similar to what was 

obtained in the first method. In that method, joint displacement weight value was 

generally dominant and had the largest value among all weights. Similarly, the optimal 

joint displacement weight in this test posture was dominant and equal to 0.57. 
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6.4. Discussion 

The goal in this chapter was to understand how humans perform to complete a 

task by using ANN to predict some PMs that control this performance. Since no work 

was done to study and determine which performance measures drive humans to 

accomplish tasks, this chapter demonstrated using ANN as a decision engine for 

predicting the weights of human PMs. These PMs are functions that control human 

posture. The PM weights need to be determined to predict proper posture for such a task. 

The PMs are combined in one equation (Equation 6.1), where each PM has a weight that 

determines the importance of that PM in the problem. 

Two new methodologies were presented in this chapter to provide a training 

source to use GRNN as a decision engine to predict four PM weights (discomfort, joint 

displacement, maximum joint torque, and total joint torques). These methods differed as 

far as the source of the collected training cases. The first method depended on setting the 

four PM weights subjectively to produce proper postures. The method was examined 

using two tasks: touching a point in front of the body using the right hand, and touching a 

point in front of the body with the right hand with a 100 N load on the hand. The second 

method depended on using Mo-cap postures to indirectly extract the four PM weights. 

The second proposed method is more promising, since it depends on the use of real 

postures to train the network. This research was the first to try to predict the human PMs 

and their importance in a task-based manner. 

Since the training cases were collected subjectively based on visual acceptance, 

the results were evaluated visually too. The results showed that the GRNN predicted the 

PM weights well. The network predictions for different on- and off-grid test cases were 

visually accepted and comparable to those obtained manually. This method is helpful 

because it saves the time of trying many PM weight collections until the postures look 

better. Actually, some predicted PM weights were better than those used in the training, 

like Case 1 in the on-grid test results. In addition, studying two different tasks showed 
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how PM weights change according to the task to be achieved. So, this method was direct 

and easy to use for training the network to predict these PM weights for different tasks.  

After applying both tasks in the first method, predicting weights for the task of 

touching a point in the front with and without force, general trends were drawn about the 

importance of each PM in those two tasks. It is interesting that people tend to minimize 

their joint torques in cases where there is applied load but minimize the movement (joint 

displacement) when no load exists. Even though the training cases in this method were 

obtained by manually predicted postures, the accepted network predictions for these PMs 

might be successfully generalized in future work to have more tasks and more conditions 

or inputs for the same task. 

In the second proposed method, motion-captured postures were considered as a 

source of training. Since direct PM extraction from Mo-cap was impossible, an 

optimization-based formula was presented in this chapter to optimize and extract the PM 

weights from the given motion-captured joint angles. This method succeeded in 

extracting PM weights from Mo-cap data. Therefore, it is considered the first approach 

that obtains PM information from a reliable source like Mo-cap.  

Unlike the first method in this chapter and the previous application in this thesis, 

GRNN was not used to apply the second method, because sufficient training data were 

not available. However, examining the validity of the proposed approach was more 

important at this level because once the initial test of this approach works well, collecting 

more training cases for the sake of using GRNN will be the default. Then, the results of 

this approach will be guaranteed because GRNN already showed high and promising 

success when it was used for other DHM applications in this research, including the first 

method proposed in this chapter. Future work should entail obtaining the PM weights 

from additional Mo-cap data using the proposed method in this chapter and then using the 

obtained weights to train the network. 
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Another validation for the second approach could be performed by comparing the 

weight values that were obtained from the optimization and those from manual selection 

in the first approach. The weight values in the first approach showed that the general 

dominant PM was joint displacement for the task of touching a point in front. This 

domination was similar to what the optimization produced, which was 0.57 or 57%. 

Another interesting conclusion was that the all optimized weight values in the second 

approach, which used actual Mo-cap posture, had values and contributed in the optimal 

solution. That means that they are all important in producing actual and realistic posture, 

and prediction of any posture should not be limited by using one or two PMs. Therefore, 

this conclusion enhanced the goal of this research when it referred to the need for 

predicting all PMs. 

The work in this chapter was unique in terms of using Mo-cap data for the 

purpose of providing a source of training the GRNN to predict proper weights for 

different human PMs in a task-based manner. Eventually, GRNN could perform as a 

decision engine for human PMs that control posture prediction and many other DHM 

fields. In addition, the first approach proposed in this chapter could be used as extra 

subjective validation for the second approach when it is used in the future for other tasks. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

7.1. Summary 

The DHM world has expanded rapidly, but the current human models still need to 

be more realistic in terms of being predictive for the intended task and responsive to 

different conditions during the task. This thesis investigated the use of artificial neural 

network (ANN) to solve problems with predicting and studying digital human model 

(DHM) like the speed of calculations in motion prediction problems. It also aimed to 

predict the human performance and mimic the drivers (performance measures, PMs) that 

control task performance. 

Some DHM fields, like motion prediction, have mature models that have been 

validated successfully for predicting motions of different tasks. Such models, however, 

are need relatively long time to run and solve motion problems like predictive dynamics 

(PD) (Xiang et al., 2008), and thus they cannot be incorporated in real-time motion 

prediction. Other models are limited in providing realistic prediction for various task 

conditions like those come from prerecorded motions.  

Another key limitation in predicting various DHM problems is in finding the best 

human PMs, which are the functions that a human tries to minimize when performing any 

posture, motion, or other task. Currently, these PMs are mainly used for posture 

prediction problems, the formulation of which was described in Chapter 5 in Equations 

5.1 to 5.3. Generalizing the use of proper PMs for any task and problem will be a huge 

step toward understanding human performance, and achieving successful prediction for 

the PM combinations in various DHM problems will lead to improvements throughout 

the DHM field. Until now, no work has been performed toward direct selection or 

prediction of various PMs in any DHM field. Thus, the above issues should be solved if 
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we want to perform better and more realistic human performance prediction in a task-

based manner and, eventually, understand what drives human performance. 

ANN was included in this thesis to solve the provided DHM problems, because it 

had previously shown an excellent ability to predict any practical system and because it 

produces real-time outputs for the system when any of the system inputs are changed. 

Important work has been done to predict various DHM applications using various 

approaches, including those incorporating different types of ANN, but nobody had 

referred to a specific type of ANN or identified which one was best for DHM problems. 

Different types have different advantages and disadvantages, so choosing which one to 

use for a particular problem depends on the problem and the proper network for solving 

it; it is more an art than a science. 

In addition to determining which type of ANN is best for DHM problems, this 

thesis aimed to perform the training process, which is the core of using ANN, more 

generically and intelligently. Better network training yields improved results and more 

accurate prediction. To that end, this thesis examined the use of the general regression 

neural network (GRNN) to predict various DHM problems. GRNN’s advantages include 

the following: 

1. GRNN works quickly and without memory or training time problems. Some types 

of ANN that were previously used as common networks in DHM problems, like 

the feed forward neural network, experience problems in training when they 

encounter a large number of inputs and outputs and/or training cases. 

2. GRNN smoothes out the regression curve between the training grids, so it can 

predict the system behavior using a small number of training cases. Thus, there is 

no need for a large number of training cases from expensive training sources like 

motion capture to train the network well and yield good general prediction for the 

system under various conditions. 
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3. GRNN training never converges to a poor solution because there is no iterative 

optimization in the training process. Hence, accepted results from this network are 

guarantees for any inputs within the training grid. 

4. GRNN does not need many heuristic network parameters to be determined in 

advance for optimal network design. The Gaussian width (GW) is the only 

parameter that must be found for the network to perform well; this makes it easier 

for the user to construct a network with best performance. Other types of ANN 

require the user to specify the number of hidden layers, the neurons in each layer, 

the transfer function for each layer, and other parameters. 

This thesis made the following contributions to the DHM field: 

1. Introduced selection and use of GRNN to solve some DHM issues. The GRNN 

was selected because of its advantages that work best to handle the DHM 

problems. Then, GRNN was successfully used for three applications in different 

DHM fields, as described in Chapters 4, 5, and 6. 

2. Developed a new strategy for determining the network parameters that improve 

the accuracy of predicting any system. Moreover, training and testing processes 

for any task were automated for GRNN, guaranteeing maximum performance. 

Then, the strategy was evaluated successfully on different DHM problems in 

Chapters 4 and 5. This strategy was also automated so that anyone could easily 

use the GRNN for best performance in any application. 

3. Developed task-based human motion and posture predictions using GRNN. These 

broad applications allowed investigating the strengths and limitations in using 

GRNN in DHM applications. The strengths were studied in terms of predicting 

relatively large number of outputs from two different types, the speed of 

predicting this large number of outputs, and the achieved accuracy when 

predicting various tasks. 
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4. Developed algorithm to automate collecting the training cases for any motion 

task. The algorithm saved the consumed time in collecting training cases by 

changing all required input files each time before running the PD, and saving the 

results (new training case) consecutively under a new name. 

5. Improved the speed of calculating human motion prediction by calculating the 

outputs from any inputs in a fraction of second. Filtered out system solutions so 

that all network predictions are considered accepted outputs (i.e., no bad or 

infeasible solutions are expected). This essentially introduces coupling ANN with 

PD to provide a faster predictive system. 

6. Investigated potential issues when using GRNN to simulate posture prediction 

tasks that involve contact constraints or other conditions involving Cartesian 

locations. This thesis found serious limitation for using GRNN to predict the 

exact joint angles in touching point task. The thesis also provided an initial 

investigation as a platform for further study of ANN with posture prediction (i.e., 

evaluation of performance-measures (PMs) combinations). 

7. Proposed an intelligent decision engine for human PMs. The engine was tested to 

choose the proper PM combinations for the posture prediction tasks presented 

Chapter 6. In addition, a new training strategy for the engine was proposed for 

indirectly extracting more reliable training cases from motion capture data. This 

application was new for ANN in DHM, where GRNN was used to predict the 

weights of PMs that are minimized in a posture prediction problem. The goal of 

this application was to develop a decision engine for selecting these PMs in a 

task-based manner and, eventually, to gain a thorough understanding of the 

relationships between these PMs for various tasks. In addition, this thesis 

proposed a mathematical formulation for indirectly extracting human PM weights 

from motion-captured postures. The proposed method was proved in Chapter 6. 
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7.2. Discussion 

ANN as powerful tool for system prediction was applied successfully in this 

thesis. The hypothesis of successful improving predictive DHMs using ANN in this 

thesis was valid and promising. In general, GRNN was trained quickly and without 

experiencing any memory problems, no matter the size of the problem, in all applications. 

Moreover, the network predicted outputs from all types and numbers in a fraction of 

second. 

The semi-automated process for training and testing the network and determining 

the network parameter (GW) that was introduced in Chapter 3 facilitated the use of 

GRNN without the need for understanding and setting its properties for each intended 

use. As such, many more applications and tasks could be predicted and applied by any 

user with this type of ANN. Moreover, the new heuristic strategy for determining the GW 

parameter worked well for all applications; the network outputs were highly accepted 

using the automatically chosen GW values. Generally speaking, it was found that system 

prediction depends on: 1) the input combination (i.e., how close to the point the training 

case is), 2) the number of training cases, and 3) the network properties, which were 

automatically selected in this study to have the maximum accuracy for such a task. 

Moreover, the type of inputs and outputs that form a task could be studied to improve the 

performance of the network used. 

Generally, the results obtained from applying GRNN with the new training and 

testing strategy were comparable with those from the training sources (i.e., the exact 

results). The thesis successfully used the GRNN to predict various task-based motions 

and postures; it was generally able to produce very accurate results for both on- and off-

grid points. Thus, selecting GRNN type of ANNs in this thesis to predict DHM 

applications was the right choice, because the results were generally accepted for 

different applications. Another challenge in this thesis was checking GRNN’s ability to 

predict hundreds of outputs; this is a relatively large number and one of the limitations 
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when using other types of ANN to study human performance. In addition, the network 

was able to predict a large number of outputs of different types. In the motion prediction 

tasks in Chapter 4, the walking forward task combined joint angle profiles with joint 

torques at the same network outputs, while the jumping up on a box task had joint angle 

profiles with ground reaction forces (GRFs). 

All network training and testing processes in this thesis was performed in 

MATLAB, which provides a solid ANN toolbox. This toolbox has built-in functions to 

construct, train, and save the network. Then, the saved network is packaged as standalone 

application that could be used as function in any visual studio programs like C++ and C#. 

Santos software is built mainly using C++ and C# codes, which allows calling the 

MATLAB functions directly from Santos software without opening MATLAB or having 

it installed on the used machine. By doing the above steps, the saved network could be 

used directly in Santos environment. 

In the motion prediction tasks that were presented in Chapter 4, the training 

source, which was a PD algorithm, took hours to run the 52 training cases. The results 

produced from GRNN in a fraction of a second for both off- and on-grid test cases were 

subjectively and objectively comparable to those obtained from PD. Thus, the speed of 

GRNN prediction provides more options in terms of input ranges for the user to change 

the task input parameters and see immediate outputs. On the other hand, the obtained 

accurate predicted results from the network were related to the deterministic nature of 

predictive dynamics. 

The studied motion tasks were chosen to examine GRNN’s ability to address 

different issues. The walking task had 12 inputs and a relatively large number of two 

different types of outputs. The network was able to accurately predict all outputs. 

Jumping up on a box, which is complicated task with many constraints, needed high 

accuracy in predicting its outputs, because the hands and feet should be in contact with 

the box at some points of the task time. The constructed network for this task addressed 
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all these issues successfully with outstanding fast and accurate results. The results from 

this chapter prove the assumption of using ANN to predict human motions realistically 

and quickly. Thus, there is a great potential for GRNN to be widely used in real-time, 

task-based motion prediction and to perform like a human brain, developing and training 

continuously. 

The GRNN type of ANN has never been used in posture prediction problems. In 

Chapter 5, two different task-based posture predictions were performed for touching a 

point on the front side of the body with and without external load. A relatively small 

number of training cases was used to train the network to predict statistically accepted 

results. On the other hand, the visual results showed that there is some accuracy 

limitation for touching the exact points. Thus, the contact problem (touching the exact 

point or location) in this chapter was serious. Santos failed in exactly touching the target 

point for most of the tested cases, even the on-grid cases. To solve the contact problem in 

posture prediction tasks, two options could be applied: first, collecting more training 

cases for better network training and more accurate prediction results, and second, adding 

constraints to the network construction to force the predicted postures from the network 

to be exactly in the proper position. 

The decision engine for human PMs that was introduced in Chapter 6 provided 

the initial step in generalizing the PM selections at various posture and motion prediction 

tasks under different conditions. The results of this engine showed that the GRNN 

predicted the PM weights well for both tasks. Predicting different on- and off-grid test 

cases with visually accepted results, subjective validation, indicated that this method 

could be helpful, because it saves the time of trying many PM weight collections until the 

postures look better. From applying the engine in both tasks, general trends were drawn: 

people tend to minimize their joint torques in cases where there is applied load, and to 

minimize the movement (joint displacement) when no load exists. 
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In Chapter 6, the new method that used motion-captured postures as a training 

source succeeded in extracting the PM weights from given Mo-cap joint angles for one 

training case. This method is the first approach to obtain information about PM from a 

reliable source like Mo-cap. The extracted PM weights from the case using this method 

showed that the four PMs are important in order to predict realistic human posture. The 

optimization solution provided values for the four weights, which means that all PMs 

contributed in producing the actual posture. This training method could be populated to 

be used over many postures at various tasks. Given enough Mo-cap training data for a 

task, this method will be able to train GRNN properly to predict that task. Further proper 

prediction for PM weights at different tasks under many conditions could lead to a 

thorough understanding of the relationships between the PMs, which would ultimately 

lead to understanding how and why people think as they do when accomplishing a task. 

7.3. Future Work 

The successful use of GRNN in solving DHM problems that presented in this 

thesis could be expanded to study more human performance applications including, but 

not limited to, grasping, obstacle avoidance, and human-workplace design optimization. 

Given the application of ANN to motion prediction, posture prediction, and decision 

engine for human PMs, the use of ANN as decision engine is the most lacking in DHMs. 

And using ANN in decision engines, in specific, will have the most impact on the field of 

DHM, because understanding and predicting human drivers (PMs) allows more robust 

motion and posture predictions. 

Some limitations need to be addressed for the general use of GRNN in DHM 

field, including: 1) automatic task definition, 2) the optimal number of training cases for a 

task, and 3) extrapolation of prediction capability for off-grid points, which needs 

studying other types of ANN. Future work would include the following: 
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1. Investigate functions other than the Gaussian function that is used as radial 

transfer function in GRNN. 

2. Normalize the network outputs in case of having different types with different 

ranges to have one range for them all at the same network. Similar to the network 

inputs, normalizing the outputs could improve the network prediction ability. 

3. Reconstruct GRNN with different GW values at different neurons in the hidden 

layer. Each neuron will have its own GW to maximize the predicted outputs at the 

level of the neurons instead of the general network. 

Along with the successful applications of GRNN in predicting human motion in 

Chapter 4, tasks that include other factors and more complicated motions need to be 

studied in the future. To solve the problem of accuracy differences among different 

network outputs, specific joints could be targeted for further analysis when performing 

motion tasks. Studying joint significance is performed by studying the network neurons 

that contributes in the resulting motion profile. 

Regarding the limitations when applying GRNN to predict the task of touching 

point in the front side of the body, the network is unable to predict the proper set of joint 

angles to touch the target point exactly. In addition, to generalize the prediction capability 

for GRNN in posture prediction, the network should be used for further posture 

prediction studies. Generally, to solve the contact problem (accuracy of touching the 

target point) in posture prediction tasks, there are three potential options: 

1. Collecting many training cases to decrease the gaps in the training grid. Then, the 

new methodology for determining best GW will be able to set small GW and 

predict the task more accurately. 

2. Adding constraints to the network construction to force the predicted postures 

from the network to be exactly in the proper position. 

3. Training the network to predict joint center locations instead of joint angles may 

succeed in producing more accurate results in posture prediction tasks. Predicting 
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joint angles with small errors produces highly inaccurate results, because any 

error in predicting joint angles produces severe problems in Cartesian space 

results. On the other hand, predicting joint centers with small error should still 

provide accurate results. 

The new training method presented in Chapter 6 for using Mo-cap data to extract 

the PM weights is unique and promising. This method could provide the GRNN with 

reliable training data to predict the proper PM weights for different human PMs in a task-

based manner. Eventually, GRNN could perform as a decision engine for human PMs 

that control posture prediction and many other DHM fields. Thus, future work should 

entail obtaining the PM weights from additional Mo-cap data using the proposed method 

to train the network. The potential long-term work from this thesis is proposed in the 

following points: 

1. Improving the accuracy and task-based performance for the network, which 

requires developing in-house ANN (i.e., building our own network). This might 

be done using some or all of the following: a) separate networks for multi-task 

predictions, b) expand the network to incorporate constraints, and c) investigate 

extrapolating the predicted task, which could be performed using types of ANN 

other than the GRNN. 

2. Generalizing the task definition to have ANN work for various applications. This 

generalization could lead to predict a set of tasks (scenario) successfully. 

3. Studying what drives human performance in terms of PMs and neurons. 

Automating the PMs selection based-on the task and its conditions will help 

understanding which PMs drive human decisions at various tasks. In addition, 

connecting the network’s neurons to those in the natural brain by studying each 

neuron contribution in the final outputs, this will refer to the importance of that 

specific neuron in the task. 
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4. Using the network training process to study the difference between well trained 

and poorly trained individuals. This could be performed by training the network 

to predict specific task using larger and/or fewer number of training cases, which 

reflects the individual’s experience in performing that task. 
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APPENDIX A 

 HUMAN MODEL  

Currently, there are many human modeling software programs that analyze and 

study human behaviors realistically. To study what drives human performance, however, 

we need a well-developed human model with high fidelity. A good human model has a 

sufficient number of DOFs, real joint range of motion (ROM), and real anthropometry. In 

this thesis, we will use the Santos human model, which is one of the most advanced 

human models that have been developed to date. The Santos virtual human software was 

built by the Virtual Soldier Research (VSR) program at The University of Iowa (Figure 

A.1). This human model mimics the human body by having 55 DOFs and all links that 

connect these DOFs (Abdel-Malek et al., 2007). Santos’s skeleton is modeled to move as 

a series of links where each pair of links is connected by one or more revolute joints. 

Each joint could contribute in one or more DOFs and, depending on the task, some or all 

joint revolutions will produce the motion of the skeleton as one composite. 

In Figure A.1, Santos’s joints are located where different links meet. At the joint 

location, there are one or more DOFs depending on the anatomical structure of that joint 

in the natural human. The green cylinders represent the different DOFs provided by 

various joints, and black arrows (L1 to L28) show the links. In addition, each DOF has 

ROM equal to that of an average human. Hence, Santos shows by validation real and 

trustable results for many applications that are done by the VSR group. Therefore, we 

will depend on this human model for all parts of this thesis. 
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Figure A.1: The Virtual Human Santos. 
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APPENDIX B 

TABLES OF TRAINING CASES FOR ALL TASKS 

Table B.1: Values of the input parameters for the training cases in walking forward task. 

Case 
# 

Velocity BP 
weight 

Link 
1 

Link 
2 

Link 
3 

Link 
4 

ROM 
1 

Lower 

ROM 
1 

upper 

ROM 
2 

Lower 

ROM 
2 

Upper 

ROM 
3 

Lower 

ROM 
3 

Upper 

1 0.8 0 0.078 0.434 0.395 0.121 -123.3 8.7 5 149.7 7.3 71.6 

2 0.8 -157.5 0.078 0.434 0.395 0.121 -123.3 8.7 5 149.7 7.3 71.6 

3 0.8 -315 0.078 0.434 0.395 0.121 -123.3 8.7 5 149.7 7.3 71.6 

4 1.6 0 0.078 0.434 0.395 0.121 -123.3 8.7 5 149.7 7.3 71.6 

5 1.6 -157.5 0.078 0.434 0.395 0.121 -123.3 8.7 5 149.7 7.3 71.6 

6 0.8 0 0.088 0.445 0.424 0.117 -123.3 8.7 5 149.7 7.3 71.6 

7 0.8 -157.5 0.088 0.445 0.424 0.117 -123.3 8.7 5 149.7 7.3 71.6 

8 0.8 -315 0.088 0.445 0.424 0.117 -123.3 8.7 5 149.7 7.3 71.6 

9 1.6 -157.5 0.088 0.445 0.424 0.117 -123.3 8.7 5 149.7 7.3 71.6 

10 1.6 -315 0.088 0.445 0.424 0.117 -123.3 8.7 5 149.7 7.3 71.6 

11 0.8 0 0.098 0.456 0.454 0.113 -123.3 8.7 5 149.7 7.3 71.6 

12 0.8 -157.5 0.098 0.456 0.454 0.113 -123.3 8.7 5 149.7 7.3 71.6 

13 0.8 -315 0.098 0.456 0.454 0.113 -123.3 8.7 5 149.7 7.3 71.6 

14 1.6 0 0.098 0.456 0.454 0.113 -123.3 8.7 5 149.7 7.3 71.6 

15 1.6 -157.5 0.098 0.456 0.454 0.113 -123.3 8.7 5 149.7 7.3 71.6 

16 1.6 -315 0.098 0.456 0.454 0.113 -123.3 8.7 5 149.7 7.3 71.6 

17 0.8 0 0.088 0.445 0.424 0.117 -105 5 5 149.7 7.3 71.6 

18 0.8 -157.5 0.088 0.445 0.424 0.117 -105 5 5 149.7 7.3 71.6 

19 0.8 -315 0.088 0.445 0.424 0.117 -105 5 5 149.7 7.3 71.6 

20 1.6 0 0.088 0.445 0.424 0.117 -105 5 5 149.7 7.3 71.6 

21 1.6 -157.5 0.088 0.445 0.424 0.117 -105 5 5 149.7 7.3 71.6 

22 1.6 -315 0.088 0.445 0.424 0.117 -105 5 5 149.7 7.3 71.6 

23 0.8 0 0.088 0.445 0.424 0.117 -90 2 5 149.7 7.3 71.6 

24 0.8 -157.5 0.088 0.445 0.424 0.117 -90 2 5 149.7 7.3 71.6 

25 0.8 -315 0.088 0.445 0.424 0.117 -90 2 5 149.7 7.3 71.6 

26 1.6 0 0.088 0.445 0.424 0.117 -90 2 5 149.7 7.3 71.6 

27 1.6 -157.5 0.088 0.445 0.424 0.117 -90 2 5 149.7 7.3 71.6 
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Table B.1: Continued. 

28 1.6 -315 0.088 0.445 0.424 0.117 -90 2 5 149.7 7.3 71.6 

29 0.8 0 0.088 0.445 0.424 0.117 -123.3 8.7 10 130 7.3 71.6 

30 0.8 -157.5 0.088 0.445 0.424 0.117 -123.3 8.7 10 130 7.3 71.6 

31 0.8 -315 0.088 0.445 0.424 0.117 -123.3 8.7 10 130 7.3 71.6 

32 1.6 0 0.088 0.445 0.424 0.117 -123.3 8.7 10 130 7.3 71.6 

33 1.6 -157.5 0.088 0.445 0.424 0.117 -123.3 8.7 10 130 7.3 71.6 

34 1.6 -315 0.088 0.445 0.424 0.117 -123.3 8.7 10 130 7.3 71.6

35 0.8 0 0.088 0.445 0.424 0.117 -123.3 8.7 20 110 7.3 71.6 

36 0.8 -157.5 0.088 0.445 0.424 0.117 -123.3 8.7 20 110 7.3 71.6 

37 0.8 -315 0.088 0.445 0.424 0.117 -123.3 8.7 20 110 7.3 71.6 

38 1.6 0 0.088 0.445 0.424 0.117 -123.3 8.7 20 110 7.3 71.6 

39 1.6 -157.5 0.088 0.445 0.424 0.117 -123.3 8.7 20 110 7.3 71.6 

40 1.6 -315 0.088 0.445 0.424 0.117 -123.3 8.7 20 110 7.3 71.6 

41 0.8 0 0.088 0.445 0.424 0.117 -123.3 8.7 5 149.7 15 60 

42 0.8 -157.5 0.088 0.445 0.424 0.117 -123.3 8.7 5 149.7 15 60 

43 0.8 -315 0.088 0.445 0.424 0.117 -123.3 8.7 5 149.7 15 60 

44 1.6 0 0.088 0.445 0.424 0.117 -123.3 8.7 5 149.7 15 60 

45 1.6 -157.5 0.088 0.445 0.424 0.117 -123.3 8.7 5 149.7 15 60 

46 1.6 -315 0.088 0.445 0.424 0.117 -123.3 8.7 5 149.7 15 60 

47 0.8 0 0.088 0.445 0.424 0.117 -123.3 8.7 5 149.7 20 50 

48 0.8 -157.5 0.088 0.445 0.424 0.117 -123.3 8.7 5 149.7 20 50 

49 0.8 -315 0.088 0.445 0.424 0.117 -123.3 8.7 5 149.7 20 50 

50 1.6 0 0.088 0.445 0.424 0.117 -123.3 8.7 5 149.7 20 50 

51 1.6 -157.5 0.088 0.445 0.424 0.117 -123.3 8.7 5 149.7 20 50 

52 1.6 -315 0.088 0.445 0.424 0.117 -123.3 8.7 5 149.7 20 50 
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Table B.2: Values of the input parameters for the 
training cases in jumping up on box task. 

case # Box height Link 1 Link 2 Link 3 Link 4 

1 50 9 38 39 9 

2 55 9 38 39 9 

3 60 9 38 39 9 

4 65 9 38 39 9 

5 70 9 38 39 9 

6 75 9 38 39 9 

7 80 9 38 39 9 

8 85 9 38 39 9 

9 90 9 38 39 9 

10 95 9 38 39 9 

11 100 9 38 39 9 

12 50 7.8 43 39 12 

13 55 7.8 43 39 12 

14 60 7.8 43 39 12 

15 65 7.8 43 39 12 

16 70 7.8 43 39 12 

17 75 7.8 43 39 12 

18 80 7.8 43 39 12 

19 85 7.8 43 39 12 

20 90 7.8 43 39 12 

21 95 7.8 43 39 12 

22 100 7.8 43 39 12 
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Table B.3: Values of the input parameters for the training cases in the task of posture 
prediction without external load. 

Case 
# 

X Y Z R. shoulder 1 
Lower 

R. shoulder 1 
Upper 

R. shoulder 2 
Lower 

R. shoulder 2 
Upper 

R. Elbow 
Lower 

R. Elbow 
Upper 

1 6 -51 -67 -23 123.5 -19 111 -148.5 -12.5 

2 -40 -40 -73 -23 123.5 -19 111 -148.5 -12.5 

3 -64 51 -77 -23 123.5 -19 111 -148.5 -12.5 

4 -20 39 -98 -23 123.5 -19 111 -148.5 -12.5 

5 29 44 -96 -23 123.5 -19 111 -148.5 -12.5 

6 25 106 -40 -23 123.5 -19 111 -148.5 -12.5 

7 -6 110 -32 -23 123.5 -19 111 -148.5 -12.5 

8 -39 99 -40 -23 123.5 -19 111 -148.5 -12.5 

9 -49 100 -22 -23 123.5 -19 111 -148.5 -12.5 

10 -20 105 -26 -23 123.5 -19 111 -148.5 -12.5 

11 28 106 -28 -23 123.5 -19 111 -148.5 -12.5 

12 70 15 -44 -23 123.5 -19 111 -148.5 -12.5 

13 -2 -3 -26 -23 123.5 -19 111 -148.5 -12.5 

14 -93 23 -41 -23 123.5 -19 111 -148.5 -12.5 

15 -50 -37 -55 -23 123.5 -19 111 -148.5 -12.5 

16 37 -36 -50 -23 123.5 -19 111 -148.5 -12.5 

17 -3 -1 -95 -23 123.5 -5 50 -148.5 -12.5 

18 34 77 -30 -23 123.5 -5 50 -148.5 -12.5 

19 -31 67 -42 -23 123.5 -5 50 -148.5 -12.5 

20 37 120 3 -23 123.5 -5 50 -148.5 -12.5 

21 -76 20 -61 -23 123.5 -5 50 -148.5 -12.5 

22 -3 108 -2 -5 60 -19 111 -148.5 -12.5 

23 -1 56 -37 -5 60 -19 111 -148.5 -12.5 

24 28 -17 -67 -5 60 -19 111 -148.5 -12.5 

25 61 -38 -17 -5 60 -19 111 -148.5 -12.5 

26 -102 49 -22 -5 60 -19 111 -148.5 -12.5 

27 -43 -56 -37 -23 123.5 -19 111 -80 -40 

28 -12 95 -57 -23 123.5 -19 111 -80 -40 

29 55 71 -60 -23 123.5 -19 111 -80 -40 

30 -49 -55 -33 -23 123.5 -19 111 -80 -40 

31 77 74 -21 -23 123.5 -19 111 -80 -40 
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Table B.4: Values of the input parameters for the training cases in the task of posture 
prediction with external load. 

Case 
# 

X Y Z R. shoulder 1 
Lower 

R. shoulder 1 
Upper 

 

R. shoulder 2 
Lower 

R. shoulder 2 
Upper 

R. Elbow 
Lower 

R. Elbow 
Upper 

1 -76 -20 -33 -23 123.5 -19 111 -148.5 -12.5 

2 -16 -16 -35 -23 123.5 -19 111 -148.5 -12.5 

3 17 -11 -34 -23 123.5 -19 111 -148.5 -12.5 

4 33 -22 -30 -23 123.5 -19 111 -148.5 -12.5 

5 32 -41 -44 -23 123.5 -19 111 -148.5 -12.5 

6 -21 -17 -61 -23 123.5 -19 111 -148.5 -12.5 

7 -49 -47 -41 -23 123.5 -19 111 -148.5 -12.5 

8 -60 34 -31 -23 123.5 -19 111 -148.5 -12.5 

9 -5 38 -19 -23 123.5 -19 111 -148.5 -12.5 

10 59 42 -35 -23 123.5 -19 111 -148.5 -12.5 

11 11 97 -18 -23 123.5 -19 111 -148.5 -12.5 

12 -19 102 -14 -23 123.5 -19 111 -148.5 -12.5 

13 -15 107 -13 -23 123.5 -19 111 -148.5 -12.5 

14 -24 103 -21 -23 123.5 -19 111 -148.5 -12.5 

15 -10 85 -50 -23 123.5 -19 111 -148.5 -12.5 

16 19 103 -24 -23 123.5 -19 111 -148.5 -12.5 

17 23 29 -76 -23 123.5 -19 111 -148.5 -12.5 

18 -3 14 -73 -23 123.5 -19 111 -148.5 -12.5 

19 -50 62 -54 -23 123.5 -19 111 -148.5 -12.5 

20 12 19 -72 -23 123.5 -19 111 -148.5 -12.5 

21 17 -6 -82 -23 123.5 -19 111 -148.5 -12.5 

22 -51 14 -82 -23 123.5 -19 111 -148.5 -12.5 

23 -43 11 -65 -23 123.5 0 50 -148.5 -12.5 

24 10 -19 -60 -23 123.5 0 50 -148.5 -12.5 

25 18 70 -33 -23 123.5 0 50 -148.5 -12.5 

26 -17 71 -35 -23 123.5 0 50 -148.5 -12.5 

27 -41 70 -39 -5 50 -19 111 -148.5 -12.5 

28 38 68 -40 -5 50 -19 111 -148.5 -12.5 

29 24 -30 -47 -5 50 -19 111 -148.5 -12.5 

30 -49 -30 -49 -5 50 -19 111 -148.5 -12.5 

31 -40 17 -65 -23 123.5 -19 111 -70 -30 

32 12 8 -68 -23 123.5 -19 111 -70 -30 

33 7 95 -36 -23 123.5 -19 111 -70 -30 

34 -21 107 -23 -23 123.5 -19 111 -70 -30 
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Table B.5: Values of the input parameters for the training cases in extracting the 
performance measures (PMs) for the task of posture prediction without external load. 

Case 
# 

X Y Z R. shoulder 1 
Lower 

R. shoulder 1 
Upper 

R. shoulder 2 
Lower 

R. shoulder 2 
Upper 

R. Elbow 
Lower 

R. Elbow 
Upper 

1 -63 45 0 -23 123.5 -19 111 -148.5 -12.5 

2 -66 69 -54 -23 123.5 -19 111 -148.5 -12.5 

3 0 33 -23 -23 123.5 -19 111 -148.5 -12.5 

4 -7 85 -70 -23 123.5 -19 111 -148.5 -12.5 

5 -12 37 -102 -23 123.5 -19 111 -148.5 -12.5 

6 51 35 -15 -23 123.5 -19 111 -148.5 -12.5 

7 37 7 -88 -23 123.5 -19 111 -148.5 -12.5 

8 46 46 -18 -23 123.5 -19 111 -148.5 -12.5 

9 -23 -50 -58 -23 123.5 -19 111 -148.5 -12.5 

10 52 99 1 -23 123.5 -19 111 -148.5 -12.5 

11 52 99 -26 -23 123.5 -19 111 -148.5 -12.5 

12 0 91 -18 -23 123.5 -19 111 -148.5 -12.5 

13 -46 103 -17 -23 123.5 -19 111 -148.5 -12.5 

14 -97 70 -10 -23 123.5 -19 111 -148.5 -12.5 

15 -56 -2 -89 -5 60 -5 50 -80 -40 

16 -21 69 -82 -5 60 -5 50 -80 -40 

17 5 38 -57 -5 60 -5 50 -80 -40 

18 47 85 -56 -5 60 -5 50 -80 -40 

19 -3 21 -52 -10 110 -19 59 -120 -20 

20 40 -13 -57 -8 90 -10 80 -130 -20 

21 -37 94 -37 -17 70 -15 100 -90 -35 
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Table B.6: Values of the input parameters for the training cases in extracting the 
performance measures (PMs) for the task of posture prediction with external load. 

Case 
# 

X Y Z R. shoulder 1 
Lower 

R. shoulder 1 
Upper 

R. shoulder 2 
Lower 

R. shoulder 2 
Upper 

R. Elbow 
Lower 

R. Elbow 
Upper 

1 -63 45 0 -23 123.5 -19 111 -148.5 -12.5 

2 -66 69 -54 -23 123.5 -19 111 -148.5 -12.5 

3 0 33 -23 -23 123.5 -19 111 -148.5 -12.5 

4 -7 85 -70 -23 123.5 -19 111 -148.5 -12.5 

5 -12 37 -102 -23 123.5 -19 111 -148.5 -12.5 

6 51 35 -15 -23 123.5 -19 111 -148.5 -12.5 

7 37 7 -88 -23 123.5 -19 111 -148.5 -12.5 

8 46 46 -18 -23 123.5 -19 111 -148.5 -12.5 

9 -23 -50 -58 -23 123.5 -19 111 -148.5 -12.5 

10 52 99 1 -23 123.5 -19 111 -148.5 -12.5 

11 52 99 -26 -23 123.5 -19 111 -148.5 -12.5 

12 0 91 -18 -23 123.5 -19 111 -148.5 -12.5 

13 -46 103 -17 -23 123.5 -19 111 -148.5 -12.5 

14 -97 70 -10 -23 123.5 -19 111 -148.5 -12.5 

15 -56 -2 -89 -5 60 -5 50 -80 -40 

16 -21 69 -82 -5 60 -5 50 -80 -40 

17 5 38 -57 -5 60 -5 50 -80 -40 

18 47 85 -56 -5 60 -5 50 -80 -40 

19 -3 21 -52 -10 110 -19 59 -120 -20 

20 40 -13 -57 -8 90 -10 80 -130 -20 

21 -37 94 -37 -17 70 -15 100 -90 -35 
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